FLASH radiotherapy (FLASH RT) is an innovative modality in cancer treatment that delivers ultrahigh dose rates (UHDRs), distinguishing it from conventional radiotherapy (CRT). FLASH RT has demonstrated the potential to enhance the therapeutic window by reducing radiation-induced damage to normal tissues while maintaining tumor control, a phenomenon termed the FLASH effect. Despite promising outcomes, the precise mechanisms underlying the FLASH effect remain elusive and are a focal point of current research. This review explores the metabolic and cellular responses to FLASH RT compared to CRT, with particular focus on the differential impacts on normal and tumor tissues. Key findings suggest that FLASH RT may mitigate damage in healthy tissues via altered reactive oxygen species (ROS) dynamics, which attenuate downstream oxidative damage. Studies indicate the FLASH RT influences iron metabolism and lipid peroxidation pathways differently than CRT. Additionally, various studies indicate that FLASH RT promotes the preservation of mitochondrial integrity and function, which helps maintain apoptotic pathways in normal tissues, attenuating damage. Current knowledge of the metabolic influences following FLASH RT highlights its potential to minimize toxicity in normal tissues, while also emphasizing the need for further studies in biologically relevant, complex systems to better understand its clinical potential. By targeting distinct metabolic pathways, FLASH RT could represent a transformative advance in RT, ultimately improving the therapeutic window for cancer treatment.