On the Use of Neural Networks in the Modeling of Yield Surfaces

屈服面 有限元法 产量(工程) 一致性(知识库) 平面应力 人工神经网络 插值(计算机图形学) 计算机科学 本构方程 算法 结构工程 工程类 材料科学 人工智能 复合材料 运动(物理)
作者
Stefan C. Soare
出处
期刊:International Journal for Numerical Methods in Engineering [Wiley]
卷期号:126 (1)
标识
DOI:10.1002/nme.7616
摘要

ABSTRACT The classic constitutive model of metal plasticity employs the concept of yield surface to describe the strain‐stress response of metals. Yield surfaces are constructed as level sets of yield functions, which in turn are assumed to be homogeneous, smooth and convex. These properties ensure the mathematical consistency of the constitutive model while also facilitating the calibration of the yield function. The significant progress in computing hardware and software of the last two decades has opened new possibilities for research into general‐purpose yield functions that are capable of capturing with high accuracy the mechanical properties of sheet metal. Here we investigate the modeling capabilities of yield functions defined by homogeneous, smooth and convex neural networks (HSC‐NN). We find that small‐sized HSC‐NNs are capable of reproducing a wide range of convex shapes. This type of network is then ideally suited to data‐driven frameworks based on virtual testing or on interpolation of data from mechanical tests, being easy to deploy in finite element codes. HSC‐NNs are particularly adept at fitting aggregations of plane stress and out‐of‐plane data to build yield surface models accounting for 3D‐stress states. We use them here to bring new insights into a recent cup‐drawing experiment with aluminum alloy AA6016‐T4. Finite element simulations with both plane stress and 3D models show promising results. In particular, the overall simulation run times of the HSC‐NNs employed here are found to be comparable with those of conventional yield functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Allen完成签到,获得积分10
刚刚
蔡徐坤发布了新的文献求助10
刚刚
陈明娃完成签到,获得积分10
刚刚
善良的茗茗完成签到,获得积分10
1秒前
确幸完成签到 ,获得积分10
1秒前
欢呼靳完成签到,获得积分20
2秒前
2秒前
eiko发布了新的文献求助10
2秒前
chunying完成签到,获得积分10
2秒前
小包应助7890733采纳,获得10
2秒前
lalala应助7890733采纳,获得10
2秒前
小赵冲冲冲完成签到,获得积分10
4秒前
粥粥完成签到 ,获得积分10
4秒前
Go完成签到,获得积分20
4秒前
发嗲的含芙完成签到,获得积分10
4秒前
nothing完成签到,获得积分10
5秒前
FUNG完成签到 ,获得积分10
6秒前
范森林完成签到 ,获得积分10
6秒前
6秒前
6秒前
iceeer完成签到,获得积分10
7秒前
7秒前
李7完成签到,获得积分10
7秒前
雨纷纷完成签到,获得积分10
8秒前
8秒前
宇航完成签到,获得积分10
8秒前
踏实谷蓝完成签到 ,获得积分10
8秒前
正直的雅绿完成签到,获得积分10
8秒前
8秒前
花花完成签到,获得积分10
9秒前
善学以致用应助nothing采纳,获得10
9秒前
Dalia完成签到,获得积分10
9秒前
蔡徐坤完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
qq发布了新的文献求助30
11秒前
暮冬发布了新的文献求助10
12秒前
鹏飞九霄完成签到,获得积分10
12秒前
摸鱼的螺完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256697
求助须知:如何正确求助?哪些是违规求助? 4418858
关于积分的说明 13753828
捐赠科研通 4292073
什么是DOI,文献DOI怎么找? 2355297
邀请新用户注册赠送积分活动 1351736
关于科研通互助平台的介绍 1312485