On the Use of Neural Networks in the Modeling of Yield Surfaces

屈服面 有限元法 产量(工程) 一致性(知识库) 平面应力 人工神经网络 插值(计算机图形学) 计算机科学 本构方程 算法 结构工程 工程类 材料科学 人工智能 复合材料 运动(物理)
作者
Stefan C. Soare
出处
期刊:International Journal for Numerical Methods in Engineering [Wiley]
卷期号:126 (1)
标识
DOI:10.1002/nme.7616
摘要

ABSTRACT The classic constitutive model of metal plasticity employs the concept of yield surface to describe the strain‐stress response of metals. Yield surfaces are constructed as level sets of yield functions, which in turn are assumed to be homogeneous, smooth and convex. These properties ensure the mathematical consistency of the constitutive model while also facilitating the calibration of the yield function. The significant progress in computing hardware and software of the last two decades has opened new possibilities for research into general‐purpose yield functions that are capable of capturing with high accuracy the mechanical properties of sheet metal. Here we investigate the modeling capabilities of yield functions defined by homogeneous, smooth and convex neural networks (HSC‐NN). We find that small‐sized HSC‐NNs are capable of reproducing a wide range of convex shapes. This type of network is then ideally suited to data‐driven frameworks based on virtual testing or on interpolation of data from mechanical tests, being easy to deploy in finite element codes. HSC‐NNs are particularly adept at fitting aggregations of plane stress and out‐of‐plane data to build yield surface models accounting for 3D‐stress states. We use them here to bring new insights into a recent cup‐drawing experiment with aluminum alloy AA6016‐T4. Finite element simulations with both plane stress and 3D models show promising results. In particular, the overall simulation run times of the HSC‐NNs employed here are found to be comparable with those of conventional yield functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏温发布了新的文献求助10
刚刚
1秒前
贪玩的友桃完成签到,获得积分10
1秒前
QAZ完成签到 ,获得积分10
1秒前
酷波er应助欢呼冰蓝采纳,获得10
1秒前
uuu发布了新的文献求助10
2秒前
科目三应助鱼鱼采纳,获得10
2秒前
Lucas应助魔幻的斑马采纳,获得10
2秒前
3秒前
托比昂首挺胸完成签到,获得积分10
3秒前
风中的仙人掌完成签到,获得积分10
3秒前
苏卿应助清爽的亦瑶采纳,获得10
4秒前
周周周完成签到,获得积分10
4秒前
忧虑的冰姬完成签到,获得积分10
4秒前
5秒前
清风朗月发布了新的文献求助10
5秒前
5秒前
5秒前
zhou完成签到,获得积分20
5秒前
6秒前
FashionBoy应助娜娜采纳,获得10
6秒前
6秒前
干净沛菡发布了新的文献求助10
6秒前
jimmylafs完成签到 ,获得积分10
7秒前
周周周发布了新的文献求助10
7秒前
7秒前
隐形曼青应助痞老板采纳,获得30
8秒前
关复观发布了新的文献求助30
8秒前
森ok发布了新的文献求助10
9秒前
9秒前
10秒前
dxweqx发布了新的文献求助10
10秒前
10秒前
lzy发布了新的文献求助10
11秒前
uuu完成签到,获得积分20
11秒前
蔡勇强发布了新的文献求助10
11秒前
11秒前
wadaxiwa应助俭朴咖啡采纳,获得10
11秒前
L123发布了新的文献求助10
12秒前
fy207完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552909
求助须知:如何正确求助?哪些是违规求助? 3128985
关于积分的说明 9380117
捐赠科研通 2828106
什么是DOI,文献DOI怎么找? 1554841
邀请新用户注册赠送积分活动 725612
科研通“疑难数据库(出版商)”最低求助积分说明 715095