On the Use of Neural Networks in the Modeling of Yield Surfaces

屈服面 有限元法 产量(工程) 一致性(知识库) 平面应力 人工神经网络 插值(计算机图形学) 计算机科学 本构方程 算法 结构工程 工程类 材料科学 人工智能 复合材料 运动(物理)
作者
Stefan C. Soare
出处
期刊:International Journal for Numerical Methods in Engineering [Wiley]
卷期号:126 (1)
标识
DOI:10.1002/nme.7616
摘要

ABSTRACT The classic constitutive model of metal plasticity employs the concept of yield surface to describe the strain‐stress response of metals. Yield surfaces are constructed as level sets of yield functions, which in turn are assumed to be homogeneous, smooth and convex. These properties ensure the mathematical consistency of the constitutive model while also facilitating the calibration of the yield function. The significant progress in computing hardware and software of the last two decades has opened new possibilities for research into general‐purpose yield functions that are capable of capturing with high accuracy the mechanical properties of sheet metal. Here we investigate the modeling capabilities of yield functions defined by homogeneous, smooth and convex neural networks (HSC‐NN). We find that small‐sized HSC‐NNs are capable of reproducing a wide range of convex shapes. This type of network is then ideally suited to data‐driven frameworks based on virtual testing or on interpolation of data from mechanical tests, being easy to deploy in finite element codes. HSC‐NNs are particularly adept at fitting aggregations of plane stress and out‐of‐plane data to build yield surface models accounting for 3D‐stress states. We use them here to bring new insights into a recent cup‐drawing experiment with aluminum alloy AA6016‐T4. Finite element simulations with both plane stress and 3D models show promising results. In particular, the overall simulation run times of the HSC‐NNs employed here are found to be comparable with those of conventional yield functions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yvette完成签到,获得积分10
刚刚
yuyichi完成签到,获得积分10
刚刚
xiaoxiao完成签到,获得积分10
1秒前
1秒前
1秒前
zzZ发布了新的文献求助10
1秒前
1秒前
lyy66964193完成签到,获得积分10
2秒前
王京华发布了新的文献求助10
2秒前
李健的小迷弟应助lululu采纳,获得10
2秒前
长尾巴的人类完成签到,获得积分10
2秒前
LHY发布了新的文献求助10
2秒前
gb完成签到 ,获得积分10
2秒前
充电宝应助xiaojiahuo采纳,获得10
2秒前
3秒前
柒tt完成签到,获得积分10
4秒前
陶醉的天与完成签到 ,获得积分10
4秒前
文艺如凡发布了新的文献求助10
4秒前
小菜鸟发布了新的文献求助10
5秒前
云重言完成签到,获得积分10
6秒前
奇异果果发布了新的文献求助10
6秒前
田様应助洁净的涵山采纳,获得10
7秒前
无疾而终完成签到,获得积分10
7秒前
大倩完成签到,获得积分10
7秒前
Jun完成签到 ,获得积分10
7秒前
7秒前
lyy发布了新的文献求助10
8秒前
李健的小迷弟应助晋姝采纳,获得10
9秒前
赘婿应助爆炸采纳,获得10
9秒前
群q发布了新的文献求助10
9秒前
9秒前
10秒前
xlf完成签到 ,获得积分10
10秒前
潘潘007完成签到,获得积分20
11秒前
Min完成签到,获得积分10
11秒前
NexusExplorer应助小Z采纳,获得10
12秒前
12秒前
12秒前
12秒前
大个应助夕荀采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005