Framework for Aleatory Variability and Epistemic Uncertainty for the Ground-Motion Characterization Based on the Level of Simplification

不确定度量化 参数统计 不确定性传播 概率逻辑 不确定度分析 地震动 数学 计算机科学 统计 工程类 结构工程
作者
Irene Liou,Norman A. Abrahamson
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society]
标识
DOI:10.1785/0120240141
摘要

ABSTRACT Aleatory variability and epistemic uncertainty are commonly used concepts in probabilistic seismic hazard analysis (PSHA); however, separating uncertainty into aleatory variability and epistemic uncertainty is often seen as arbitrary. As part of the ground-motion characterization, we present a clarifying framework for defining aleatory variability and epistemic uncertainty for ground-motion models (GMMs). Aleatory variability is mainly due to unmodeled physical behaviors affecting ground motion. In contrast, epistemic uncertainty refers to the scientific uncertainty that the earthquake effects included in the model are modeled correctly. What is treated as aleatory variability and epistemic uncertainty depends on the level of model simplification. Simple models have larger aleatory variability and smaller epistemic uncertainty than complex models that model more physical behaviors. The framework has two parts: the method component, related to the algorithm and basic formulation for computing the ground motion, and the parametric component, which captures the effect of inputs to the GMM that are not included in the hazard integral. Each part has three components: aleatory variability, epistemic uncertainty in the median ground motion, and epistemic uncertainty in the size of the aleatory variability. The six terms provide a framework to ensure that all parts of the aleatory variability and epistemic uncertainty are included once and only once in the hazard calculation. The framework is especially beneficial as a guide for incorporating more complex GMMs into PSHA; it clarifies the separation of aleatory variability and epistemic uncertainty for nonergodic GMMs and numerical simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mynuongga完成签到,获得积分10
1秒前
3秒前
jiangjingyao完成签到 ,获得积分10
3秒前
4秒前
xiaobai发布了新的文献求助20
4秒前
wangxinyue发布了新的文献求助10
4秒前
4秒前
善学以致用应助greatsnow采纳,获得30
4秒前
yeon发布了新的文献求助10
4秒前
共享精神应助hhjndjnjk采纳,获得10
5秒前
8秒前
8秒前
9秒前
9秒前
10秒前
华仔应助yeon采纳,获得10
10秒前
香蕉觅云应助呆头鹅鹅仔采纳,获得10
11秒前
lll完成签到,获得积分10
11秒前
Skyrin完成签到,获得积分10
12秒前
drwalyssa发布了新的文献求助10
13秒前
Ambition完成签到,获得积分10
13秒前
14秒前
Ava应助何书易采纳,获得10
15秒前
安静的颖应助jisimyang98采纳,获得10
16秒前
Jack完成签到,获得积分10
16秒前
18秒前
简单的张哈哈完成签到,获得积分10
19秒前
魏淑辉完成签到,获得积分10
19秒前
隐形飞雪完成签到,获得积分10
20秒前
z1z1z发布了新的文献求助10
21秒前
21秒前
yeon驳回了灰灰应助
22秒前
super完成签到,获得积分10
23秒前
小奶狗发布了新的文献求助10
23秒前
隐形曼青应助木象爱火锅采纳,获得10
24秒前
Jiawww完成签到,获得积分10
25秒前
化学发布了新的文献求助10
26秒前
随心流浪发布了新的文献求助10
26秒前
莫知完成签到,获得积分10
27秒前
27秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259713
求助须知:如何正确求助?哪些是违规求助? 2901203
关于积分的说明 8314612
捐赠科研通 2570733
什么是DOI,文献DOI怎么找? 1396653
科研通“疑难数据库(出版商)”最低求助积分说明 653554
邀请新用户注册赠送积分活动 631822