已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Framework for Aleatory Variability and Epistemic Uncertainty for the Ground-Motion Characterization Based on the Level of Simplification

不确定度量化 参数统计 不确定性传播 概率逻辑 不确定度分析 地震动 数学 计算机科学 统计 工程类 结构工程
作者
Irene Liou,Norman A. Abrahamson
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society of America]
标识
DOI:10.1785/0120240141
摘要

ABSTRACT Aleatory variability and epistemic uncertainty are commonly used concepts in probabilistic seismic hazard analysis (PSHA); however, separating uncertainty into aleatory variability and epistemic uncertainty is often seen as arbitrary. As part of the ground-motion characterization, we present a clarifying framework for defining aleatory variability and epistemic uncertainty for ground-motion models (GMMs). Aleatory variability is mainly due to unmodeled physical behaviors affecting ground motion. In contrast, epistemic uncertainty refers to the scientific uncertainty that the earthquake effects included in the model are modeled correctly. What is treated as aleatory variability and epistemic uncertainty depends on the level of model simplification. Simple models have larger aleatory variability and smaller epistemic uncertainty than complex models that model more physical behaviors. The framework has two parts: the method component, related to the algorithm and basic formulation for computing the ground motion, and the parametric component, which captures the effect of inputs to the GMM that are not included in the hazard integral. Each part has three components: aleatory variability, epistemic uncertainty in the median ground motion, and epistemic uncertainty in the size of the aleatory variability. The six terms provide a framework to ensure that all parts of the aleatory variability and epistemic uncertainty are included once and only once in the hazard calculation. The framework is especially beneficial as a guide for incorporating more complex GMMs into PSHA; it clarifies the separation of aleatory variability and epistemic uncertainty for nonergodic GMMs and numerical simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZHONGYOUNG发布了新的文献求助10
3秒前
土豆完成签到 ,获得积分10
4秒前
顺心的皮卡丘完成签到 ,获得积分10
6秒前
shuhaha完成签到,获得积分10
7秒前
晓晓来了完成签到,获得积分10
10秒前
lilili完成签到 ,获得积分10
10秒前
小蘑菇应助谦让碧菡采纳,获得10
11秒前
逍遥子0211完成签到,获得积分10
12秒前
丰富源智完成签到,获得积分10
13秒前
唐ZY123发布了新的文献求助10
16秒前
滴嘟滴嘟完成签到 ,获得积分10
17秒前
19秒前
怡然凌柏完成签到 ,获得积分10
20秒前
21秒前
周冯雪完成签到 ,获得积分10
21秒前
22秒前
阔达静曼完成签到 ,获得积分10
22秒前
23秒前
24秒前
诸星大发布了新的文献求助50
25秒前
2220完成签到 ,获得积分10
25秒前
NeuroYue发布了新的文献求助10
27秒前
yinshan完成签到 ,获得积分10
27秒前
帅帅发布了新的文献求助10
27秒前
维维发布了新的文献求助10
28秒前
科研通AI5应助唐ZY123采纳,获得10
29秒前
kikikiki完成签到,获得积分10
30秒前
elmacho完成签到 ,获得积分10
30秒前
dd完成签到,获得积分10
31秒前
卧镁铀钳完成签到 ,获得积分10
31秒前
科研通AI6应助发发采纳,获得10
31秒前
科研通AI6应助发发采纳,获得10
31秒前
32秒前
xiaolong给xiaolong的求助进行了留言
32秒前
Owen应助帅帅采纳,获得10
33秒前
科研通AI6应助NeuroYue采纳,获得10
34秒前
谦让碧菡发布了新的文献求助10
38秒前
小明应助PPD采纳,获得10
39秒前
43秒前
求知者1701应助诸星大采纳,获得50
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610291
求助须知:如何正确求助?哪些是违规求助? 4016305
关于积分的说明 12434932
捐赠科研通 3697878
什么是DOI,文献DOI怎么找? 2039077
邀请新用户注册赠送积分活动 1071968
科研通“疑难数据库(出版商)”最低求助积分说明 955614