A Lightweight Anti-Unmanned Aerial Vehicle Detection Method Based on Improved YOLOv11

计算机科学 人工智能 计算机视觉 遥感 无人机 航空学 海洋工程 工程类 地质学 生物 遗传学
作者
Yunlong Gao,Yibing Xin,Huan Yang,Yongjuan Wang
出处
期刊:Drones [MDPI AG]
卷期号:9 (1): 11-11
标识
DOI:10.3390/drones9010011
摘要

Research on anti-UAV (anti-unmanned aerial vehicle) detection techniques is essential, since the widespread use of UAVs, while improving convenience, poses several hidden risks to privacy, security, air control, etc. This paper focuses on the challenges of long-distance UAV identification and proposes a lightweight anti-UAV detection method based on improved YOLOv11. Firstly, HWD is imported as the backbone’s downsampling module, which lowers feature loss in the feature extraction procedure while using fewer parameters. A lighter CCFM structure is then used in place of the original neck portion, to improve the model’s capacity to detect small targets and adjust to scale changes. The detection effect on small targets is greatly enhanced by removing the original large-scale detection head and adding a new small-scale detection head in response to the small size of UAV targets. In this paper, experimental validation was carried out using the DUT ANTI-UAV dataset, and, compared to the baseline model YOLOv11, the method we propose improved the P, R, mAP50, and mAP50-05 metrics by 4%, 4.5%, 4.1%, and 4.9%, respectively, and decreased the parameters by 38.4%. However, the FPS declined by roughly 5%. The experimental results show that the improved method we propose has better performance in anti-UAV detection tasks, and the model is more lightweight.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助嘟嘟采纳,获得10
1秒前
阿托品发布了新的文献求助10
1秒前
科研通AI5应助聪聪采纳,获得10
2秒前
奋斗的醉柳发布了新的文献求助200
2秒前
2秒前
4秒前
ABC完成签到,获得积分10
4秒前
5秒前
宜醉宜游宜睡应助ZZZ采纳,获得10
6秒前
6秒前
6秒前
艾玛应助R66采纳,获得10
6秒前
6秒前
yudabaoer发布了新的文献求助10
7秒前
小趴完成签到,获得积分10
7秒前
dandan发布了新的文献求助10
7秒前
shgd完成签到,获得积分10
7秒前
8秒前
yyy111完成签到,获得积分10
8秒前
犹豫幼晴完成签到,获得积分10
9秒前
不安青牛应助俏皮雨雪采纳,获得10
10秒前
sketch发布了新的文献求助10
11秒前
yyy111发布了新的文献求助10
11秒前
11秒前
life发布了新的文献求助30
11秒前
cocolu应助fff采纳,获得10
11秒前
12秒前
落寞的笑白完成签到,获得积分10
15秒前
16秒前
思源应助吴彦祖采纳,获得10
17秒前
17秒前
莉莉安完成签到 ,获得积分10
17秒前
xzl完成签到,获得积分10
18秒前
Ashhh发布了新的文献求助10
18秒前
科研通AI5应助辉hui采纳,获得10
18秒前
19秒前
19秒前
20秒前
chassie发布了新的文献求助10
21秒前
liu123发布了新的文献求助10
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490736
求助须知:如何正确求助?哪些是违规求助? 3077538
关于积分的说明 9149233
捐赠科研通 2769733
什么是DOI,文献DOI怎么找? 1519934
邀请新用户注册赠送积分活动 704390
科研通“疑难数据库(出版商)”最低求助积分说明 702148