Engineering of Generative Artificial Intelligence and Natural Language Processing Models to Accurately Identify Arrhythmia Recurrence

背景(考古学) 人工智能 医学 计算机科学 自然语言处理 机器学习 古生物学 生物
作者
Ruibin Feng,Kelly Brennan,Zahra Azizi,Jatin Goyal,Brototo Deb,Hui Ju Chang,Prasanth Ganesan,Paul Clopton,Maxime Pedron,Samuel Ruipérez-Campillo,Yaanik Desai,Hugo De Larochellière,Tina Baykaner,Marco Pérez,Rodrigo Bernardi Miguel,Albert J. Rogers,Sanjiv M. Narayan
出处
期刊:Circulation-arrhythmia and Electrophysiology [Lippincott Williams & Wilkins]
标识
DOI:10.1161/circep.124.013023
摘要

BACKGROUND: Large language models (LLMs), such as ChatGPT, excel at interpreting unstructured data from public sources, yet are limited when responding to queries on private repositories, such as electronic health records (EHRs). We hypothesized that prompt engineering could enhance the accuracy of LLMs for interpreting EHR data without requiring domain knowledge, thus expanding their utility for patients and personalized diagnostics. METHODS: We designed and systematically tested prompt engineering techniques to improve the ability of LLMs to interpret EHRs for nuanced diagnostic questions, referenced to a panel of medical experts. In 490 full-text EHR notes from 125 patients with prior life-threatening heart rhythm disorders, we asked GPT-4-turbo to identify recurrent arrhythmias distinct from prior events and tested 220 563 queries. To provide context, results were compared with rule-based natural language processing and BERT-based language models. Experiments were repeated for 2 additional LLMs. RESULTS: In an independent hold-out set of 389 notes, GPT-4-turbo had a balanced accuracy of 64.3%±4.7% out-of-the-box at baseline. This increased when asking GPT-4-turbo to provide a rationale for its answers, requiring a structured data output, and providing in-context exemplars, rose to a balanced accuracy of 91.4%±3.8% ( P <0.05). This surpassed the traditional logic-based natural language processing and BERT-based models ( P <0.05). Results were consistent for GPT-3.5-turbo and Jurassic-2 LLMs. CONCLUSIONS: The use of prompt engineering strategies enables LLMs to identify clinical end points from EHRs with an accuracy that surpassed natural language processing and approximated experts, yet without the need for expert knowledge. These approaches could be applied to LLM queries for other domains, to facilitate automated analysis of nuanced data sets with high accuracy by nonexperts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小月亮完成签到,获得积分20
刚刚
511完成签到,获得积分10
刚刚
刚刚
淡淡夕阳发布了新的文献求助10
刚刚
oon完成签到,获得积分10
刚刚
优秀元枫完成签到,获得积分10
刚刚
满意的天完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
yali发布了新的文献求助20
2秒前
刘亦菲发布了新的文献求助30
2秒前
汉堡包应助灵巧的孤容采纳,获得10
2秒前
珍惜一切完成签到,获得积分10
2秒前
ZLQ发布了新的文献求助10
2秒前
温婉的小刺猬完成签到,获得积分10
3秒前
3秒前
longsay完成签到,获得积分10
3秒前
从容岩完成签到,获得积分10
4秒前
岁月情长完成签到,获得积分10
4秒前
现代飞鸟完成签到,获得积分10
4秒前
4秒前
4秒前
文艺沉鱼完成签到 ,获得积分10
5秒前
日月小发布了新的文献求助10
5秒前
食分子发布了新的文献求助10
5秒前
小晓完成签到,获得积分10
5秒前
木马上市完成签到,获得积分10
5秒前
一二发布了新的文献求助10
6秒前
爱看论文完成签到,获得积分10
6秒前
苏东方完成签到,获得积分10
6秒前
乘风完成签到,获得积分10
7秒前
芑璇完成签到,获得积分10
7秒前
54662133发布了新的文献求助10
8秒前
延陵君完成签到,获得积分10
8秒前
2哇哇哇发布了新的文献求助10
8秒前
8秒前
五六七完成签到,获得积分10
8秒前
8秒前
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337441
求助须知:如何正确求助?哪些是违规求助? 4474663
关于积分的说明 13925195
捐赠科研通 4369647
什么是DOI,文献DOI怎么找? 2400867
邀请新用户注册赠送积分活动 1393968
关于科研通互助平台的介绍 1365793