Engineering of Generative Artificial Intelligence and Natural Language Processing Models to Accurately Identify Arrhythmia Recurrence

背景(考古学) 人工智能 医学 计算机科学 自然语言处理 机器学习 生物 古生物学
作者
Ruibin Feng,Kelly Brennan,Zahra Azizi,Jatin Goyal,Brototo Deb,Hui Ju Chang,Prasanth Ganesan,Paul Clopton,Maxime Pedron,Samuel Ruipérez-Campillo,Yaanik Desai,Hugo De Larochellière,Tina Baykaner,Marco Pérez,Rodrigo Bernardi Miguel,Albert J. Rogers,Sanjiv M. Narayan
出处
期刊:Circulation-arrhythmia and Electrophysiology [Lippincott Williams & Wilkins]
标识
DOI:10.1161/circep.124.013023
摘要

BACKGROUND: Large language models (LLMs), such as ChatGPT, excel at interpreting unstructured data from public sources, yet are limited when responding to queries on private repositories, such as electronic health records (EHRs). We hypothesized that prompt engineering could enhance the accuracy of LLMs for interpreting EHR data without requiring domain knowledge, thus expanding their utility for patients and personalized diagnostics. METHODS: We designed and systematically tested prompt engineering techniques to improve the ability of LLMs to interpret EHRs for nuanced diagnostic questions, referenced to a panel of medical experts. In 490 full-text EHR notes from 125 patients with prior life-threatening heart rhythm disorders, we asked GPT-4-turbo to identify recurrent arrhythmias distinct from prior events and tested 220 563 queries. To provide context, results were compared with rule-based natural language processing and BERT-based language models. Experiments were repeated for 2 additional LLMs. RESULTS: In an independent hold-out set of 389 notes, GPT-4-turbo had a balanced accuracy of 64.3%±4.7% out-of-the-box at baseline. This increased when asking GPT-4-turbo to provide a rationale for its answers, requiring a structured data output, and providing in-context exemplars, rose to a balanced accuracy of 91.4%±3.8% ( P <0.05). This surpassed the traditional logic-based natural language processing and BERT-based models ( P <0.05). Results were consistent for GPT-3.5-turbo and Jurassic-2 LLMs. CONCLUSIONS: The use of prompt engineering strategies enables LLMs to identify clinical end points from EHRs with an accuracy that surpassed natural language processing and approximated experts, yet without the need for expert knowledge. These approaches could be applied to LLM queries for other domains, to facilitate automated analysis of nuanced data sets with high accuracy by nonexperts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyygc完成签到,获得积分10
刚刚
斯文败类应助舒服的月饼采纳,获得10
1秒前
小二郎应助Jackson采纳,获得10
1秒前
RenHP完成签到,获得积分10
1秒前
PP完成签到,获得积分20
1秒前
找文献小助手完成签到,获得积分10
1秒前
1秒前
思源应助mxy采纳,获得10
2秒前
背后问夏完成签到,获得积分20
2秒前
小糊涂完成签到,获得积分10
2秒前
寻道图强完成签到,获得积分0
2秒前
lzl完成签到,获得积分10
2秒前
lx发布了新的文献求助10
4秒前
Summer发布了新的文献求助10
4秒前
爱吃肉最棒了完成签到,获得积分10
5秒前
与闲发布了新的文献求助10
5秒前
黎明完成签到,获得积分10
6秒前
sos完成签到,获得积分10
6秒前
自己完成签到,获得积分10
7秒前
完美世界应助KX2024采纳,获得10
7秒前
conny完成签到,获得积分10
7秒前
winky完成签到,获得积分10
7秒前
奇异完成签到 ,获得积分10
8秒前
8秒前
8秒前
自行输入昵称完成签到,获得积分10
8秒前
李健应助边缘人格采纳,获得10
8秒前
科研通AI6应助宇文青寒采纳,获得10
9秒前
哈密瓜牛奶完成签到,获得积分10
10秒前
10秒前
希淇发布了新的文献求助10
10秒前
科研通AI6应助栀夏采纳,获得20
10秒前
Orange应助风风风风采纳,获得10
10秒前
一马当先霄完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
jagger完成签到,获得积分10
11秒前
Zhaoyuemeng完成签到 ,获得积分10
11秒前
YYY发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396737
求助须知:如何正确求助?哪些是违规求助? 4517074
关于积分的说明 14062206
捐赠科研通 4428957
什么是DOI,文献DOI怎么找? 2432178
邀请新用户注册赠送积分活动 1424617
关于科研通互助平台的介绍 1403657