Engineering of Generative Artificial Intelligence and Natural Language Processing Models to Accurately Identify Arrhythmia Recurrence

背景(考古学) 人工智能 医学 计算机科学 自然语言处理 机器学习 生物 古生物学
作者
Ruibin Feng,Kelly Brennan,Zahra Azizi,Jatin Goyal,Brototo Deb,Hui Ju Chang,Prasanth Ganesan,Paul Clopton,Maxime Pedron,Samuel Ruipérez-Campillo,Yaanik Desai,Hugo De Larochellière,Tina Baykaner,Marco Pérez,Rodrigo Bernardi Miguel,Albert J. Rogers,Sanjiv M. Narayan
出处
期刊:Circulation-arrhythmia and Electrophysiology [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1161/circep.124.013023
摘要

BACKGROUND: Large language models (LLMs), such as ChatGPT, excel at interpreting unstructured data from public sources, yet are limited when responding to queries on private repositories, such as electronic health records (EHRs). We hypothesized that prompt engineering could enhance the accuracy of LLMs for interpreting EHR data without requiring domain knowledge, thus expanding their utility for patients and personalized diagnostics. METHODS: We designed and systematically tested prompt engineering techniques to improve the ability of LLMs to interpret EHRs for nuanced diagnostic questions, referenced to a panel of medical experts. In 490 full-text EHR notes from 125 patients with prior life-threatening heart rhythm disorders, we asked GPT-4-turbo to identify recurrent arrhythmias distinct from prior events and tested 220 563 queries. To provide context, results were compared with rule-based natural language processing and BERT-based language models. Experiments were repeated for 2 additional LLMs. RESULTS: In an independent hold-out set of 389 notes, GPT-4-turbo had a balanced accuracy of 64.3%±4.7% out-of-the-box at baseline. This increased when asking GPT-4-turbo to provide a rationale for its answers, requiring a structured data output, and providing in-context exemplars, rose to a balanced accuracy of 91.4%±3.8% ( P <0.05). This surpassed the traditional logic-based natural language processing and BERT-based models ( P <0.05). Results were consistent for GPT-3.5-turbo and Jurassic-2 LLMs. CONCLUSIONS: The use of prompt engineering strategies enables LLMs to identify clinical end points from EHRs with an accuracy that surpassed natural language processing and approximated experts, yet without the need for expert knowledge. These approaches could be applied to LLM queries for other domains, to facilitate automated analysis of nuanced data sets with high accuracy by nonexperts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮皮团完成签到,获得积分10
刚刚
1秒前
CodeCraft应助satchzhao采纳,获得10
2秒前
2秒前
xj完成签到,获得积分20
2秒前
勤能补拙发布了新的文献求助30
4秒前
情怀应助踏实的芸遥采纳,获得30
6秒前
xj发布了新的文献求助10
6秒前
壮观的夏云完成签到,获得积分10
7秒前
lihua发布了新的文献求助10
8秒前
Susu城完成签到,获得积分20
9秒前
桐桐应助伪科学家采纳,获得10
10秒前
hang完成签到,获得积分10
10秒前
aha发布了新的文献求助80
11秒前
派总完成签到,获得积分10
11秒前
hang发布了新的文献求助10
13秒前
赘婿应助栗子采纳,获得10
13秒前
唾沫星子发布了新的文献求助10
13秒前
13秒前
勤能补拙完成签到,获得积分10
15秒前
小蘑菇应助leslie采纳,获得10
15秒前
尊敬的亿先完成签到,获得积分20
16秒前
16秒前
17秒前
15759869988完成签到 ,获得积分10
17秒前
子车安萱完成签到,获得积分10
17秒前
18秒前
18秒前
satchzhao发布了新的文献求助10
19秒前
聪慧雪糕完成签到,获得积分10
21秒前
美满疾应助Alan_Mcwave采纳,获得10
21秒前
谦让过客完成签到,获得积分10
21秒前
皮皮虾发布了新的文献求助10
22秒前
xiaoqi发布了新的文献求助10
22秒前
爆米花应助xj采纳,获得10
22秒前
海海海星派大星完成签到 ,获得积分10
23秒前
23秒前
Toby完成签到 ,获得积分10
23秒前
科研通AI2S应助阳光谷兰采纳,获得10
23秒前
伪科学家发布了新的文献求助10
23秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The Politics of Electricity Regulation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339796
求助须知:如何正确求助?哪些是违规求助? 2967851
关于积分的说明 8631285
捐赠科研通 2647360
什么是DOI,文献DOI怎么找? 1449590
科研通“疑难数据库(出版商)”最低求助积分说明 671464
邀请新用户注册赠送积分活动 660441