亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Engineering of Generative Artificial Intelligence and Natural Language Processing Models to Accurately Identify Arrhythmia Recurrence

背景(考古学) 人工智能 医学 计算机科学 自然语言处理 机器学习 古生物学 生物
作者
Ruibin Feng,Kelly Brennan,Zahra Azizi,Jatin Goyal,Brototo Deb,Hui Ju Chang,Prasanth Ganesan,Paul Clopton,Maxime Pedron,Samuel Ruipérez-Campillo,Yaanik Desai,Hugo De Larochellière,Tina Baykaner,Marco Pérez,Rodrigo Bernardi Miguel,Albert J. Rogers,Sanjiv M. Narayan
出处
期刊:Circulation-arrhythmia and Electrophysiology [Lippincott Williams & Wilkins]
标识
DOI:10.1161/circep.124.013023
摘要

BACKGROUND: Large language models (LLMs), such as ChatGPT, excel at interpreting unstructured data from public sources, yet are limited when responding to queries on private repositories, such as electronic health records (EHRs). We hypothesized that prompt engineering could enhance the accuracy of LLMs for interpreting EHR data without requiring domain knowledge, thus expanding their utility for patients and personalized diagnostics. METHODS: We designed and systematically tested prompt engineering techniques to improve the ability of LLMs to interpret EHRs for nuanced diagnostic questions, referenced to a panel of medical experts. In 490 full-text EHR notes from 125 patients with prior life-threatening heart rhythm disorders, we asked GPT-4-turbo to identify recurrent arrhythmias distinct from prior events and tested 220 563 queries. To provide context, results were compared with rule-based natural language processing and BERT-based language models. Experiments were repeated for 2 additional LLMs. RESULTS: In an independent hold-out set of 389 notes, GPT-4-turbo had a balanced accuracy of 64.3%±4.7% out-of-the-box at baseline. This increased when asking GPT-4-turbo to provide a rationale for its answers, requiring a structured data output, and providing in-context exemplars, rose to a balanced accuracy of 91.4%±3.8% ( P <0.05). This surpassed the traditional logic-based natural language processing and BERT-based models ( P <0.05). Results were consistent for GPT-3.5-turbo and Jurassic-2 LLMs. CONCLUSIONS: The use of prompt engineering strategies enables LLMs to identify clinical end points from EHRs with an accuracy that surpassed natural language processing and approximated experts, yet without the need for expert knowledge. These approaches could be applied to LLM queries for other domains, to facilitate automated analysis of nuanced data sets with high accuracy by nonexperts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yuki完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
天马发布了新的文献求助10
1分钟前
kuoping完成签到,获得积分0
2分钟前
3分钟前
罗乐天完成签到,获得积分10
3分钟前
罗乐天发布了新的文献求助10
3分钟前
天马完成签到,获得积分20
3分钟前
qq发布了新的文献求助10
4分钟前
4分钟前
4分钟前
老石完成签到 ,获得积分10
5分钟前
浮游应助美美采纳,获得10
5分钟前
酷波er应助broky采纳,获得10
5分钟前
Criminology34举报桀庚求助涉嫌违规
5分钟前
5分钟前
西瓜发布了新的文献求助10
5分钟前
6分钟前
可爱的函函应助西瓜采纳,获得10
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
broky发布了新的文献求助10
6分钟前
sherry完成签到 ,获得积分10
6分钟前
broky完成签到,获得积分10
6分钟前
Double发布了新的文献求助30
6分钟前
6分钟前
6分钟前
7分钟前
白面包不吃鱼完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
Double发布了新的文献求助10
7分钟前
7分钟前
rong完成签到,获得积分10
7分钟前
CipherSage应助科研通管家采纳,获得10
8分钟前
8分钟前
简单思萱发布了新的文献求助10
9分钟前
可爱的函函应助简单思萱采纳,获得10
9分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346748
求助须知:如何正确求助?哪些是违规求助? 4481156
关于积分的说明 13947333
捐赠科研通 4379158
什么是DOI,文献DOI怎么找? 2406182
邀请新用户注册赠送积分活动 1398752
关于科研通互助平台的介绍 1371661