Engineering of Generative Artificial Intelligence and Natural Language Processing Models to Accurately Identify Arrhythmia Recurrence

背景(考古学) 人工智能 医学 计算机科学 自然语言处理 机器学习 生物 古生物学
作者
Ruibin Feng,Kelly Brennan,Zahra Azizi,Jatin Goyal,Brototo Deb,Hui Ju Chang,Prasanth Ganesan,Paul Clopton,Maxime Pedron,Samuel Ruipérez-Campillo,Yaanik Desai,Hugo De Larochellière,Tina Baykaner,Marco Pérez,Rodrigo Bernardi Miguel,Albert J. Rogers,Sanjiv M. Narayan
出处
期刊:Circulation-arrhythmia and Electrophysiology [Lippincott Williams & Wilkins]
标识
DOI:10.1161/circep.124.013023
摘要

BACKGROUND: Large language models (LLMs), such as ChatGPT, excel at interpreting unstructured data from public sources, yet are limited when responding to queries on private repositories, such as electronic health records (EHRs). We hypothesized that prompt engineering could enhance the accuracy of LLMs for interpreting EHR data without requiring domain knowledge, thus expanding their utility for patients and personalized diagnostics. METHODS: We designed and systematically tested prompt engineering techniques to improve the ability of LLMs to interpret EHRs for nuanced diagnostic questions, referenced to a panel of medical experts. In 490 full-text EHR notes from 125 patients with prior life-threatening heart rhythm disorders, we asked GPT-4-turbo to identify recurrent arrhythmias distinct from prior events and tested 220 563 queries. To provide context, results were compared with rule-based natural language processing and BERT-based language models. Experiments were repeated for 2 additional LLMs. RESULTS: In an independent hold-out set of 389 notes, GPT-4-turbo had a balanced accuracy of 64.3%±4.7% out-of-the-box at baseline. This increased when asking GPT-4-turbo to provide a rationale for its answers, requiring a structured data output, and providing in-context exemplars, rose to a balanced accuracy of 91.4%±3.8% ( P <0.05). This surpassed the traditional logic-based natural language processing and BERT-based models ( P <0.05). Results were consistent for GPT-3.5-turbo and Jurassic-2 LLMs. CONCLUSIONS: The use of prompt engineering strategies enables LLMs to identify clinical end points from EHRs with an accuracy that surpassed natural language processing and approximated experts, yet without the need for expert knowledge. These approaches could be applied to LLM queries for other domains, to facilitate automated analysis of nuanced data sets with high accuracy by nonexperts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ss完成签到,获得积分10
1秒前
张大侠完成签到 ,获得积分20
1秒前
lemongulf发布了新的文献求助10
1秒前
qianzhihe完成签到,获得积分10
3秒前
3秒前
bob完成签到 ,获得积分20
3秒前
mm完成签到,获得积分10
3秒前
JERRY发布了新的文献求助10
3秒前
义气凡阳发布了新的文献求助10
4秒前
果冻关注了科研通微信公众号
4秒前
共享精神应助冰霜采纳,获得10
4秒前
妮露的修狗完成签到,获得积分10
4秒前
幽默的小之完成签到,获得积分10
5秒前
天天快乐应助学术大辣鸡采纳,获得10
5秒前
孙成伟完成签到,获得积分10
5秒前
周杰伦啦啦完成签到 ,获得积分10
6秒前
风中的奎发布了新的文献求助10
6秒前
开着飞机骑拖拉机完成签到,获得积分10
6秒前
一路向阳完成签到,获得积分10
6秒前
嘻哈完成签到,获得积分10
6秒前
6秒前
6秒前
清晨完成签到,获得积分10
7秒前
7秒前
2012csc完成签到 ,获得积分0
8秒前
Clarence完成签到,获得积分10
8秒前
ww完成签到,获得积分10
9秒前
9秒前
9秒前
旧人旧街完成签到,获得积分10
9秒前
合适惊蛰完成签到,获得积分10
9秒前
张大侠关注了科研通微信公众号
9秒前
勤奋的凌翠完成签到 ,获得积分10
9秒前
electricelectric应助luckweb采纳,获得10
10秒前
年轻剑身完成签到,获得积分10
10秒前
restudy68完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
lemongulf完成签到,获得积分10
11秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388079
求助须知:如何正确求助?哪些是违规求助? 4510086
关于积分的说明 14034160
捐赠科研通 4420931
什么是DOI,文献DOI怎么找? 2428520
邀请新用户注册赠送积分活动 1421146
关于科研通互助平台的介绍 1400361