Radiomics and deep learning features of pericoronary adipose tissue on non-contrast computerized tomography for predicting non-calcified plaques

无线电技术 对比度(视觉) 人工智能 脂肪组织 计算机科学 医学 放射科 内科学
作者
Junli Yu,Yan Ding,Li Wang,Shunxin Hu,Ning Dong,J. Sheng,Yaoqiang Ren,Ziyue Wang
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
标识
DOI:10.1177/08953996241292476
摘要

Background Inflammation of coronary arterial plaque is considered a key factor in the development of coronary heart disease. Early the plaque detection and timely treatment of the atherosclerosis could effectively reduce the risk of cardiovascular events. However, there is no study combining radiomics with deep learning techniques to predict non-calcified plaques (NCP) in coronary artery at present. Objective To investigate the value of combination of radiomics and deep learning features based on non-contrast computerized tomography (CT) scans of pericoronary adipose tissue (PCAT), integrating with clinical risk factors of patients, in identifying coronary inflammation and predicting the presence of NCP. Methods The clinical and imaging data of 353 patients were analyzed. The region of interest (ROI) of PCAT was manually outlined on non-contrast CT scan images, like coronary CT calcium score sequential images, then the radiomics and deep learning features in ROIs were extracted respectively. In training set (Center 1), after performing feature selection, radiomics and deep learning feature models were established, meanwhile, clinical models were built. Finally, combined models were developed out via integrating clinical, radiomics, and deep learning features. The predictive performance of the four feature model groups (clinical, radiomics, deep learning, and three combination) was assessed by seven different machine learning models through generation of receiver operating characteristic curves (ROC) and the calculation of area under the curve (AUC), sensitivity, specificity, and accuracy. Furthermore, the predictive performance of each model was validated in an external validation set (Center 2). Results For the single model comparation, eXtreme Gradient Boosting (XGBoost) showed the best performance among the clinical model group in the validation set. And Random Forest (RF) exhibited the best indicative performance not only among the radiomics feature group but also in the deep learning feature model group. What's more, among the combined model group, RF still displayed the best predictive performance, with the value of AUC, sensitivity, specificity, and accuracy in the validation set are 0.963, 0.857, 0.929, and 0.905. Conclusion The RF model in the combined model group based on non-contrast CT scan PCAT can predict the presence of NCP more accurately and has the potential for preliminary screening of the NCP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
evenpower完成签到,获得积分20
2秒前
毛豆应助Zbzb采纳,获得10
3秒前
3秒前
稳重的峻熙完成签到,获得积分10
4秒前
轩羊羊完成签到 ,获得积分10
5秒前
fosca完成签到,获得积分10
5秒前
yly123完成签到,获得积分10
7秒前
7秒前
Cris发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
yar应助波利波利爱吃鱼采纳,获得10
11秒前
wanci应助波风水门pxf采纳,获得30
11秒前
瞿选葵发布了新的文献求助10
12秒前
LULU发布了新的文献求助10
14秒前
14秒前
股份回购发布了新的文献求助10
15秒前
16秒前
Cris完成签到,获得积分10
17秒前
lqmentu完成签到,获得积分10
18秒前
18秒前
ding应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
19秒前
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
19秒前
大模型应助科研通管家采纳,获得10
19秒前
科目三应助科研通管家采纳,获得10
19秒前
乐乐应助科研通管家采纳,获得10
19秒前
华仔应助科研通管家采纳,获得10
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
20秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463119
求助须知:如何正确求助?哪些是违规求助? 3056538
关于积分的说明 9052742
捐赠科研通 2746421
什么是DOI,文献DOI怎么找? 1506925
科研通“疑难数据库(出版商)”最低求助积分说明 696226
邀请新用户注册赠送积分活动 695791