CMFE-PVT: A lightweight fault diagnosis framework for rolling bearings using compact multi-scale feature extraction and a pruned-restructured vision transformer

变压器 计算机科学 特征提取 断层(地质) 比例(比率) 人工智能 模式识别(心理学) 汽车工程 电气工程 工程类 地质学 物理 电压 量子力学 地震学
作者
Shanshan Ding,Weibing Wu,Xiaolu Ma,Fei Liu,Renwen Chen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (2): 025015-025015
标识
DOI:10.1088/1361-6501/ada3ee
摘要

Abstract The intelligent fault diagnosis method based on transformer and convolutional neural network (CNN) has achieved good global and local feature extraction results. However, the multi-head self-attention mechanism adopted by the transformer and the cross-channel convolution operation in CNN increases the complexity of the model, thereby increasing the demand for hardware resources, which to some extent, limits its broad applicability in industrial applications. Therefore, this paper proposes a lightweight fault diagnosis framework based on compact multi-scale feature extraction and pruned-restructured vision transformer (ViT) to address the above challenges. Firstly, a compact multi-scale feature extraction module is designed to efficiently capture complex features in rolling bearing vibration signals through parallel multi-scale convolution kernels, combined with channel reduction strategies to significantly reduce computational complexity while maintaining feature richness. Next, short-time Fourier transform and pseudo-color processing techniques are used to obtain time–frequency images. Then, a dual optimization of matrix sparsity and structural reorganization is implemented for Self-attention in ViT to ensure model performance and significantly reduce computational overhead. Finally, the time–frequency images are segmented and rearranged before being fed into the improved lightweight ViT for global feature extraction and fault recognition of rolling bearings. The experimental results show that the proposed fault diagnosis method has the advantages of lightweight (Params:4.27 K, floating point operations per seconds:0.1 M, multiplication and accumulation operations per seconds:51.07 K) and robustness compared to mainstream algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmm完成签到 ,获得积分10
1秒前
今后应助zhao采纳,获得10
1秒前
1秒前
liujingyi发布了新的文献求助10
1秒前
1秒前
郝老头完成签到,获得积分10
2秒前
懵懂的土豆完成签到,获得积分10
3秒前
hadron发布了新的文献求助10
4秒前
peng完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
好事连连完成签到,获得积分10
4秒前
5秒前
阔达访旋完成签到,获得积分10
5秒前
5秒前
丘比特应助Song采纳,获得30
6秒前
拉格朗日完成签到,获得积分10
6秒前
Liang完成签到 ,获得积分10
6秒前
6秒前
丘比特应助Baccano采纳,获得10
6秒前
笑笑发布了新的文献求助10
7秒前
jiabaoyu完成签到 ,获得积分10
7秒前
冷漠的布丁完成签到,获得积分10
7秒前
丘比特应助皮夏寒采纳,获得10
7秒前
好事连连发布了新的文献求助20
8秒前
hahaha完成签到,获得积分10
8秒前
GE葛完成签到,获得积分10
8秒前
喻博完成签到,获得积分10
8秒前
bobocrj发布了新的文献求助10
9秒前
ttt完成签到,获得积分10
9秒前
9秒前
nns发布了新的文献求助10
10秒前
小星星发布了新的文献求助10
10秒前
传奇3应助zx采纳,获得10
11秒前
韩小寒qqq完成签到,获得积分10
11秒前
开胃咖喱完成签到,获得积分10
11秒前
今后应助以恒之心采纳,获得10
11秒前
11秒前
乐乐应助zyp采纳,获得10
12秒前
Star完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666988
求助须知:如何正确求助?哪些是违规求助? 3225771
关于积分的说明 9765484
捐赠科研通 2935617
什么是DOI,文献DOI怎么找? 1607829
邀请新用户注册赠送积分活动 759374
科研通“疑难数据库(出版商)”最低求助积分说明 735302