Engineered Metal‐Organic Framework with Stereotactic Anchoring and Spatial Separation of Porphyrins for Amplified Ultrasound‐Mediated Pyroptosis and Cancer Immunotherapy

单线态氧 上睑下垂 卟啉 活性氧 化学 组合化学 光化学 材料科学 纳米技术 氧气 有机化学 细胞凋亡 生物化学 程序性细胞死亡
作者
Sainan Liu,Qi Meng,Zhendong Liu,Jiwei Wang,Jing Li,Xinyu Ma,Yiming Hu,Zhanfeng Wang,Ping’an Ma,Jun Lin
出处
期刊:Angewandte Chemie [Wiley]
被引量:1
标识
DOI:10.1002/anie.202421402
摘要

Ultrasound-mediated reactive oxygen species (ROS) generation is pivotal in specifically inducing pyroptosis of tumor cells. However, the effectiveness of pyroptosis is generally hindered by the constraints of ROS generation efficiency. Herein, a new porphyrin-based metal-organic framework (Fe(TCPP)-MOF) was rationally designed via an innovative dual-solvent strategy to amplify ROS generation for ultrasound-controlled pyroptosis. The crystal structure of Fe(TCPP)-MOF was elucidated by continuous rotation electron diffraction technique, revealing its regular and rigid conformation. The porphyrin molecules were precisely oriented and firmly confined within the scaffold, effectively restricting intramolecular motion. The ample distance of 6.8 Å between two porphyrin molecules confirmed the absence of π-π stacking interactions in the Fe(TCPP)-MOF framework, thereby avoiding the aggregation-caused quenching effect. Furthermore, the permanent porosity and expansive surface area of Fe(TCPP)-MOF enhanced its interaction with oxygen. These ingenious structural features endowed Fe(TCPP)-MOF with a unique ability to generate a large amount of singlet oxygen under ultrasound activation. Meanwhile, the impetus of ultrasound also accelerated the rate of the Fenton reaction catalyzed by iron ions, significantly boosting the generation of hydroxyl radicals. Benefiting from the dual amplification of ROS, Fe(TCPP)-MOF could efficiently induce tumor cells pyroptosis under ultrasound stimulation, thereby intensifying the potency of cancer immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽钢铁侠完成签到,获得积分10
1秒前
东西南北发布了新的文献求助10
1秒前
1秒前
xcydd发布了新的文献求助10
1秒前
Leonard_Canon发布了新的文献求助10
1秒前
daifei发布了新的文献求助10
2秒前
凡而不庸发布了新的文献求助10
2秒前
JamesPei应助蔺子凡采纳,获得10
3秒前
3秒前
3秒前
科研通AI5应助赵球采纳,获得10
3秒前
3秒前
zz完成签到,获得积分10
3秒前
3秒前
123发布了新的文献求助100
4秒前
4秒前
芽衣发布了新的文献求助10
4秒前
FashionBoy应助爱笑的傲薇采纳,获得10
4秒前
充电宝应助yevaaaa采纳,获得30
4秒前
5秒前
义气的惜海完成签到,获得积分20
6秒前
orixero应助Leonard_Canon采纳,获得10
6秒前
nanling发布了新的文献求助10
6秒前
6秒前
6秒前
星星完成签到,获得积分10
7秒前
曾经白亦发布了新的文献求助20
7秒前
7秒前
7秒前
8秒前
9秒前
9秒前
qqwrv发布了新的文献求助10
9秒前
najin完成签到,获得积分20
10秒前
10秒前
10秒前
10秒前
英俊的铭应助atmorz采纳,获得10
10秒前
11秒前
小垚完成签到,获得积分10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3652722
求助须知:如何正确求助?哪些是违规求助? 3216855
关于积分的说明 9714154
捐赠科研通 2924569
什么是DOI,文献DOI怎么找? 1601790
邀请新用户注册赠送积分活动 754553
科研通“疑难数据库(出版商)”最低求助积分说明 733156