Practical Compact Deep Compressed Sensing

压缩传感 计算机科学 人工智能 遥感 地质学
作者
Bin Chen,Jian Zhang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2411.13081
摘要

Recent years have witnessed the success of deep networks in compressed sensing (CS), which allows for a significant reduction in sampling cost and has gained growing attention since its inception. In this paper, we propose a new practical and compact network dubbed PCNet for general image CS. Specifically, in PCNet, a novel collaborative sampling operator is designed, which consists of a deep conditional filtering step and a dual-branch fast sampling step. The former learns an implicit representation of a linear transformation matrix into a few convolutions and first performs adaptive local filtering on the input image, while the latter then uses a discrete cosine transform and a scrambled block-diagonal Gaussian matrix to generate under-sampled measurements. Our PCNet is equipped with an enhanced proximal gradient descent algorithm-unrolled network for reconstruction. It offers flexibility, interpretability, and strong recovery performance for arbitrary sampling rates once trained. Additionally, we provide a deployment-oriented extraction scheme for single-pixel CS imaging systems, which allows for the convenient conversion of any linear sampling operator to its matrix form to be loaded onto hardware like digital micro-mirror devices. Extensive experiments on natural image CS, quantized CS, and self-supervised CS demonstrate the superior reconstruction accuracy and generalization ability of PCNet compared to existing state-of-the-art methods, particularly for high-resolution images. Code is available at https://github.com/Guaishou74851/PCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
叶子完成签到,获得积分10
1秒前
糯米糍发布了新的文献求助10
1秒前
洛苏发布了新的文献求助30
2秒前
粥虾米完成签到,获得积分10
2秒前
zzz完成签到,获得积分10
2秒前
义气代梅发布了新的文献求助10
2秒前
3秒前
西瓜鹿发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
yyuu完成签到,获得积分10
4秒前
xyl完成签到,获得积分10
4秒前
4秒前
芋泥泥泥发布了新的文献求助10
4秒前
对对碰完成签到,获得积分10
5秒前
ZQC完成签到,获得积分10
5秒前
英姑应助科研吗喽采纳,获得10
5秒前
Ava应助天真的迎天采纳,获得10
6秒前
温柔沛容完成签到 ,获得积分10
6秒前
6秒前
6秒前
萝卜发布了新的文献求助10
7秒前
科研通AI2S应助小娄娄娄采纳,获得10
7秒前
yzkkzy完成签到,获得积分10
7秒前
知许解夏应助章鱼哥采纳,获得10
8秒前
负责凛完成签到,获得积分10
8秒前
奶昔源发布了新的文献求助10
9秒前
xyl发布了新的文献求助10
9秒前
酷波er应助兰兰采纳,获得10
9秒前
彩色觅荷发布了新的文献求助10
9秒前
huenan完成签到,获得积分10
10秒前
daisies应助淡淡的苑睐采纳,获得20
10秒前
系统提示完成签到,获得积分10
11秒前
田一完成签到,获得积分10
11秒前
11秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961294
求助须知:如何正确求助?哪些是违规求助? 3507579
关于积分的说明 11136907
捐赠科研通 3240039
什么是DOI,文献DOI怎么找? 1790707
邀请新用户注册赠送积分活动 872450
科研通“疑难数据库(出版商)”最低求助积分说明 803255