Practical Compact Deep Compressed Sensing

压缩传感 计算机科学 人工智能 遥感 地质学
作者
Bin Chen,Jian Zhang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2411.13081
摘要

Recent years have witnessed the success of deep networks in compressed sensing (CS), which allows for a significant reduction in sampling cost and has gained growing attention since its inception. In this paper, we propose a new practical and compact network dubbed PCNet for general image CS. Specifically, in PCNet, a novel collaborative sampling operator is designed, which consists of a deep conditional filtering step and a dual-branch fast sampling step. The former learns an implicit representation of a linear transformation matrix into a few convolutions and first performs adaptive local filtering on the input image, while the latter then uses a discrete cosine transform and a scrambled block-diagonal Gaussian matrix to generate under-sampled measurements. Our PCNet is equipped with an enhanced proximal gradient descent algorithm-unrolled network for reconstruction. It offers flexibility, interpretability, and strong recovery performance for arbitrary sampling rates once trained. Additionally, we provide a deployment-oriented extraction scheme for single-pixel CS imaging systems, which allows for the convenient conversion of any linear sampling operator to its matrix form to be loaded onto hardware like digital micro-mirror devices. Extensive experiments on natural image CS, quantized CS, and self-supervised CS demonstrate the superior reconstruction accuracy and generalization ability of PCNet compared to existing state-of-the-art methods, particularly for high-resolution images. Code is available at https://github.com/Guaishou74851/PCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
LV完成签到,获得积分20
1秒前
MAYAN完成签到 ,获得积分10
1秒前
1秒前
芜湖完成签到 ,获得积分10
1秒前
没头脑和不高兴完成签到,获得积分10
1秒前
3秒前
4秒前
香蕉觅云应助金角小王采纳,获得30
4秒前
我是老大应助金角小王采纳,获得10
4秒前
EvY完成签到,获得积分20
4秒前
可爱的函函应助金角小王采纳,获得10
4秒前
FashionBoy应助金角小王采纳,获得50
4秒前
5秒前
锂能源发布了新的文献求助10
5秒前
onionoo发布了新的文献求助30
6秒前
领导范儿应助晓爽采纳,获得10
6秒前
单薄的忆枫完成签到,获得积分10
7秒前
8秒前
zhouzhou发布了新的文献求助10
8秒前
9秒前
Hello应助sga采纳,获得10
9秒前
隐形曼青应助钱浩采纳,获得10
10秒前
俏皮易绿完成签到 ,获得积分10
11秒前
喏晨完成签到 ,获得积分10
11秒前
852应助岩下松风采纳,获得10
12秒前
cmh发布了新的文献求助10
12秒前
是木易呀应助OisinLokame采纳,获得10
12秒前
yueyue完成签到,获得积分10
12秒前
董小贱发布了新的文献求助10
13秒前
caixiaobinger完成签到 ,获得积分10
13秒前
GGBond完成签到,获得积分10
15秒前
阿泽完成签到 ,获得积分10
15秒前
锂能源完成签到,获得积分10
15秒前
16秒前
FashionBoy应助fengl采纳,获得10
16秒前
16秒前
阿切完成签到,获得积分20
18秒前
qly应助研友_LjDyNZ采纳,获得10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294979
求助须知:如何正确求助?哪些是违规求助? 2931033
关于积分的说明 8449725
捐赠科研通 2603561
什么是DOI,文献DOI怎么找? 1421144
科研通“疑难数据库(出版商)”最低求助积分说明 660825
邀请新用户注册赠送积分活动 643654