Halting Oxygen Evolution to Achieve Long Cycle Life in Sodium Layered Cathodes

氧化还原 析氧 阴极 氧气 密度泛函理论 化学物理 化学工程 纳米技术 材料科学 化学 无机化学 计算化学 电极 工程类 电化学 物理化学 有机化学
作者
Haoji Wang,Jinqiang Gao,Yu Mei,Lianshan Ni,Yi He,Ningyun Hong,Jiangnan Huang,Wentao Deng,Guoqiang Zou,Hongshuai Hou,Chaoping Liang,Tongchao Liu,Xiaobo Ji,Khalil Amine
出处
期刊:Angewandte Chemie [Wiley]
标识
DOI:10.1002/anie.202418605
摘要

Oxygen redox chemistries at high voltage have materialized as a revolutionary paradigm for cathodes with high-energy density; however, they are plagued by the challenges of labile oxygen loss and rapid degradations upon cycling, even after concerted endeavors from the research community. Here we propose a multi-concentration stratagem propelled by entropy reinforcement to enhance the electronic structure disorder (ESD) at high desodiation states for impeding undesired oxygen mobility and ensuring controlled oxygen activity, elucidated by density functional theory calculations. The increased disorder strengthens the reversible electrochemistry of lattice oxygen redox, leading to effectively suppressed P-O structural evolution and highly stable localized TMO6 octahedral environments, as demonstrated by soft/hard X-ray absorption spectroscopy. Furthermore, we reveal that a high-entropy state induced by cationic disordering has capacity to perturb cationic redox boundaries, significantly restraining the formation of detrimental P3' phases. As a consequence, the high-voltage cycling stability has been greatly enhanced, up to 4.4 V versus Na+/Na, with an impressive 90.1% capacity retention at 1C over 100 cycles and 76.1% capacity retention at 2C over 300 cycles. The resilient oxygen redox, enabled through the control of ESD, broadens the horizons for entropy engineering and lays the foundation for advancements in high-energy, long-cycling, safe batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
walzn完成签到,获得积分10
刚刚
丘比特应助拼搏的青雪采纳,获得200
刚刚
dognmnm完成签到,获得积分10
刚刚
wuweizhizhi完成签到,获得积分10
1秒前
天天快乐应助kingripple采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
糊涂的寒蕾完成签到,获得积分10
1秒前
共享精神应助科研通管家采纳,获得30
1秒前
1351567822应助科研通管家采纳,获得30
1秒前
所所应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
阿航完成签到,获得积分10
2秒前
wanci应助科研通管家采纳,获得30
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
小杨同学应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
sun应助科研通管家采纳,获得20
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
3秒前
李啊啊应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
大个应助靓丽的向日葵采纳,获得10
3秒前
Allen完成签到,获得积分10
4秒前
4秒前
王梽旭完成签到,获得积分20
5秒前
哈哈哈发布了新的文献求助10
5秒前
英姑应助wzh采纳,获得20
6秒前
克泷发布了新的文献求助10
6秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661564
求助须知:如何正确求助?哪些是违规求助? 3222552
关于积分的说明 9746662
捐赠科研通 2932215
什么是DOI,文献DOI怎么找? 1605487
邀请新用户注册赠送积分活动 757943
科研通“疑难数据库(出版商)”最低求助积分说明 734584