Self‐Reconstruction of High Entropy Alloys for Efficient Alkaline Hydrogen Evolution

高熵合金 材料科学 合金 冶金 化学 有机化学
作者
Jin Yao,Xing Fan,Qiming Li,Mingrui Guo,Jingsheng Bai,Haiping Lin,Yecan Pi,Shuang Cao,Chun‐Chao Hou,Shuxing Bai
出处
期刊:Small [Wiley]
被引量:1
标识
DOI:10.1002/smll.202408165
摘要

Alkaline water (H2O) electrolysis is currently a commercialized green hydrogen (H2) production technology, yet the unsatisfactory hydrogen evolution reaction (HER) performance severely limits its energy conversion efficiency and cost reduction. Herein, PtRu2.9Fe0.15Co1.5Ni1.3 high entropy alloys (HEAs) is synthesized and subsequently exploited electrochemically induced structural oxidation processes to construct self-reconfigurable HEAs, as an efficient alkaline HER catalyst. The optimized self-reconstructed PtRu2.9Fe0.15Co1.5Ni1.3 HEAs with the HEAs and cobalt rutheniate interface (HEAs-Co2RuO4) exhibits excellent alkaline HER performance, requiring just 11.8 mV to obtain a current density (j) of 10 mA cm-2 in 1 m KOH. And the j on HEAs-Co2RuO4 is 41.8 mA cm-2 at 0.07 VRHE, 2.0 and 6.1 times higher than PtRu2.9Fe0.15Co1.5Ni1.3 HEAs and 20% Pt/C. Mechanism studies reveal that the improved alkaline HER performance of HEAs-Co2RuO4 is due to the formation of HEAs-Co2RuO4, which significantly shrinks the Helmholtz layer, provides a new fast material transport channel, boosts H2O adsorption, and reduces hydrogen adsorption, and thus accelerates the alkaline HER. This research not only throws new light on the self-reconstruction of catalysts but also provides guidance for the rational design of efficient electrocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助YZ采纳,获得10
刚刚
刚刚
仁爱觅风发布了新的文献求助10
1秒前
1秒前
壮观的思远应助turbo采纳,获得10
2秒前
栗子完成签到,获得积分10
3秒前
3秒前
ttfakira完成签到,获得积分10
3秒前
4秒前
sound完成签到,获得积分10
5秒前
5秒前
初心发布了新的文献求助10
5秒前
sunyuice完成签到,获得积分10
6秒前
魔幻的绿海完成签到 ,获得积分10
6秒前
Cu_wx发布了新的文献求助10
6秒前
7秒前
7秒前
魔法师完成签到,获得积分0
7秒前
旭a完成签到,获得积分10
7秒前
7秒前
冷酷乘风发布了新的文献求助10
9秒前
善学以致用应助乔乔乔乔采纳,获得10
10秒前
顾矜应助DJMZ采纳,获得10
10秒前
10秒前
林林发布了新的文献求助20
11秒前
装满阳光的橘子完成签到,获得积分10
11秒前
Aurora发布了新的文献求助10
11秒前
kiuikiu发布了新的文献求助10
12秒前
12秒前
FashionBoy应助Cu_wx采纳,获得10
13秒前
13秒前
13秒前
上官若男应助专注的语堂采纳,获得10
14秒前
15秒前
Chaos完成签到,获得积分10
15秒前
冷酷乘风完成签到,获得积分10
15秒前
明鹄完成签到 ,获得积分10
15秒前
16秒前
16秒前
17秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734838
求助须知:如何正确求助?哪些是违规求助? 3278737
关于积分的说明 10011382
捐赠科研通 2995434
什么是DOI,文献DOI怎么找? 1643431
邀请新用户注册赠送积分活动 781171
科研通“疑难数据库(出版商)”最低求助积分说明 749290