亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial Intelligence in Computer-Aided Drug Design (CADD) Tools for the Finding of Potent Biologically Active Small Molecules: Traditional to Modern Approach

计算机辅助 计算机科学 数量结构-活动关系 计算机辅助设计 生化工程 机器学习 工程类 程序设计语言 操作系统
作者
Benjamin Siddiqui,Chandra Shekhar Yadav,Mohd Akil,Mohd Faiyyaz,Abdul Rahman Khan,Naseem Ahmad,Firoj Hassan,Mohd. Irfan Azad,Mohammad Owais,Malik Nasibullah,Iqbal Azad
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science]
卷期号:28
标识
DOI:10.2174/0113862073334062241015043343
摘要

Abstract: Computer-Aided Drug Design (CADD) entails designing molecules that could potentially interact with a specific biomolecular target and promising their potential binding. The stereo- arrangement and stereo-selectivity of small molecules (SMs)--based chemotherapeutic agents significantly influence their therapeutic potential and enhance their therapeutic advantages. CADD has been a well-established field for decades, but recent years have observed a significant shift toward acceptance of computational approaches in both academia and the pharmaceutical industry. Recently, artificial intelligence (AI), bioinformatics, and data science have played a significant role in drug discovery to accelerate the development of effective treatments, reduce expenses, and eliminate the need for animal testing. This shift can be attributed to the availability of extensive data on molecular properties, binding to therapeutic targets, and their 3D structures. Increasing interest from legislators, pharmaceutical companies, and academic and industrial scientists is evidence that AI is reshaping the drug discovery industry. To achieve success in drug discovery, it is necessary to optimize pharmacodynamic, pharmacokinetic, and clinical outcome-related properties. Moreover, the advent of on-demand virtual libraries containing billions of drug-like SMs, coupled with abundant computing capacities, has further facilitated this transition. To fully capitalize on these resources, rapid computational methods are needed for effective ligand screening. This includes structure-based virtual screening (SBVS) of vast chemical spaces, aided by fast iterative screening approaches. At the same time, advances in deep learning (DL) predictions of ligand properties and target activities have become very helpful, as they no longer need information about the structure of the receptor. This study examines recent progress in the drug discovery and development (DDD) approach, their potential to reshape the entire DDD process, and the challenges they face. This review examines the role of artificial intelligence as a fundamental component in drug discovery, particularly focusing on small molecules. It also discusses how AI-driven approaches can expedite the identification of diverse, potent, target-specific, and drug-like ligands for protein targets. This advancement has the potential to make drug discovery more efficient and cost-effective, ultimately facilitating the development of safer and more effective therapeutics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
15秒前
像猫的狗完成签到 ,获得积分10
36秒前
38秒前
1分钟前
欧阳蛋蛋鸡完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Xiexie完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
123发布了新的文献求助10
2分钟前
2分钟前
123完成签到,获得积分20
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
小二郎应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
无花果应助samifranco采纳,获得10
3分钟前
3分钟前
4分钟前
Otter完成签到,获得积分10
4分钟前
samifranco发布了新的文献求助10
4分钟前
4分钟前
无花果应助斯文墨镜采纳,获得10
5分钟前
持卿应助科研通管家采纳,获得10
5分钟前
持卿应助科研通管家采纳,获得10
5分钟前
满意的伊完成签到,获得积分10
5分钟前
5分钟前
5分钟前
斯文墨镜发布了新的文献求助10
5分钟前
5分钟前
琳琳完成签到,获得积分10
5分钟前
琳琳发布了新的文献求助10
6分钟前
努尔完成签到 ,获得积分10
6分钟前
喜喜发布了新的文献求助10
6分钟前
John发布了新的文献求助10
6分钟前
宫城应助喜喜采纳,获得10
6分钟前
7分钟前
喜喜完成签到,获得积分10
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526536
求助须知:如何正确求助?哪些是违规求助? 3106982
关于积分的说明 9281992
捐赠科研通 2804573
什么是DOI,文献DOI怎么找? 1539504
邀请新用户注册赠送积分活动 716580
科研通“疑难数据库(出版商)”最低求助积分说明 709579