The strong-coupling microcavity between excitons and photons facilitates efficient modulation and control of light, as well as precise manipulation of photon propagation properties. This phenomenon demonstrates significant potential for diverse applications in quantum information processing, optical sensing, and nonlinear optics. The anapole, as a specific type of captured state, allows for effective control over the electromagnetic field through appropriate distributions of current and charge, generating substantial localized effects within the field. This mechanism provides a novel avenue for investigating the strong-coupling dynamics between photons and excitons in hybrid metamaterial sensing. Here, the rate of energy exchange between the excitons and the optical microcavity of the metamaterial is greater than their individual dissipation rates, resulting in significant Rabi splitting phenomena and pronounced anti-crossing behavior, ultimately forming an "ultrasensitive photoreactive region" suitable for sensing applications. Furthermore, the nonlocal metamaterial, characterized by strong light-matter coupling, can be integrated with functionalized colloidal gold and monoclonal tag antibodies to enable rapid multidimensional detection and identification of total prostate-specific antigen (tPSA) in complex environmental solutions. The proposed strong-coupling resonance microcavity plays a crucial role in the rapid evolution of nonlocal metamaterials, enhancing their applicability in molecular detection and selective recognition of fundamental light-matter interaction phenomena.