已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhancing Herbal Medicine-Drug Interaction Prediction Using Large Language Models

计算机科学 自然语言处理 人工智能 数据科学
作者
Sisi Yuan,Zhecheng Zhou,Xinyuan Jin,Linlin Zhuo,Keqin Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2025.3558667
摘要

Investigating potential interactions between drugs and herbal medicines helps optimize combined treatment strategies and supports personalized and precision medicine. Deep learning-based methods have been successful in predicting drug-related interactions. However, these methods face challenges such as low data quality and uneven distribution. Large language models (LLMs) effectively address these challenges through their extensive knowledge bases. Motivated by this, we integrate LLMs, one-hot encoding, and variational graph autoencoders (VGAEs) to propose a herbal medicine-drug interaction (HDI) prediction model. First, LLMs are employed to extract features from drug SMILES, generating high-quality molecular representations. Second, one-hot encoding is applied to herbal medicines with multiple natural products to construct feature vectors and improve model interpretability. Finally, VGAEs are utilized to reconstruct herbal medicine-drug graphs and predict unknown HDIs. Additionally, we differentiate between herbal medicine-drug similarity and the degree of individual drug or herbal medicine nodes to mitigate the dominance of high-degree nodes in VGAE message flow. Multiple experiments were conducted to validate the significance of the proposed model and its key components. This method shows great potential for applications in traditional Chinese medicine formulation optimization, new drug development, and precision medicine. Our code and data are accessible at: https://github.com/sisyyuan/HDI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文武兼备发布了新的文献求助10
2秒前
3秒前
完美世界应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
香芋应助科研通管家采纳,获得20
4秒前
Ava应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
8R60d8应助科研通管家采纳,获得10
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
5秒前
沉静一刀完成签到 ,获得积分10
8秒前
文武兼备完成签到,获得积分10
14秒前
lee完成签到,获得积分10
15秒前
酒醉的蝴蝶完成签到 ,获得积分10
17秒前
18秒前
22秒前
上官若男应助A3000采纳,获得10
23秒前
ccc完成签到 ,获得积分10
25秒前
hancahngxiao完成签到,获得积分20
26秒前
26秒前
Yuanyuan发布了新的文献求助10
27秒前
28秒前
32秒前
PIMES发布了新的文献求助10
32秒前
酷酷的乌冬面完成签到,获得积分10
34秒前
34秒前
山山而川发布了新的文献求助20
34秒前
35秒前
36秒前
36秒前
WUYONGSHUAI发布了新的文献求助10
37秒前
托尔斯泰发布了新的文献求助10
39秒前
A3000发布了新的文献求助10
39秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725129
求助须知:如何正确求助?哪些是违规求助? 3270246
关于积分的说明 9965146
捐赠科研通 2985203
什么是DOI,文献DOI怎么找? 1637795
邀请新用户注册赠送积分活动 777724
科研通“疑难数据库(出版商)”最低求助积分说明 747171