Predicting and Interpreting Protein Developability Via Transfer of Convolutional Sequence Representation

计算生物学 计算机科学 人工智能 机器学习 健身景观 代表(政治) 氨基酸 维数之咒 生物 生物化学 社会学 人口学 人口 政治 政治学 法学
作者
Alexander W. Golinski,Zachary D. Schmitz,Gregory H. Nielsen,Bryce Johnson,Diya Saha,Sandhya Appiah,Benjamin J. Hackel,Stefano Martiniani
出处
期刊:ACS Synthetic Biology [American Chemical Society]
卷期号:12 (9): 2600-2615 被引量:2
标识
DOI:10.1021/acssynbio.3c00196
摘要

Engineered proteins have emerged as novel diagnostics, therapeutics, and catalysts. Often, poor protein developability─quantified by expression, solubility, and stability─hinders utility. The ability to predict protein developability from amino acid sequence would reduce the experimental burden when selecting candidates. Recent advances in screening technologies enabled a high-throughput (HT) developability dataset for 105 of 1020 possible variants of protein ligand scaffold Gp2. In this work, we evaluate the ability of neural networks to learn a developability representation from a HT dataset and transfer this knowledge to predict recombinant expression beyond observed sequences. The model convolves learned amino acid properties to predict expression levels 44% closer to the experimental variance compared to a non-embedded control. Analysis of learned amino acid embeddings highlights the uniqueness of cysteine, the importance of hydrophobicity and charge, and the unimportance of aromaticity, when aiming to improve the developability of small proteins. We identify clusters of similar sequences with increased recombinant expression through nonlinear dimensionality reduction and we explore the inferred expression landscape via nested sampling. The analysis enables the first direct visualization of the fitness landscape and highlights the existence of evolutionary bottlenecks in sequence space giving rise to competing subpopulations of sequences with different developability. The work advances applied protein engineering efforts by predicting and interpreting protein scaffold expression from a limited dataset. Furthermore, our statistical mechanical treatment of the problem advances foundational efforts to characterize the structure of the protein fitness landscape and the amino acid characteristics that influence protein developability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
汉堡包应助一个可爱的人采纳,获得10
1秒前
科研通AI5应助球球采纳,获得10
1秒前
卜钊发布了新的文献求助10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
MIAAAO发布了新的文献求助10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得100
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得20
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
一晌贪欢完成签到 ,获得积分10
2秒前
2秒前
2秒前
DijiaXu应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
拼搏的万言完成签到,获得积分10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
Lucas应助qiqi采纳,获得10
3秒前
杨一发布了新的文献求助10
3秒前
Blank发布了新的文献求助10
4秒前
Zymiao发布了新的文献求助10
5秒前
苦难诗社完成签到,获得积分10
5秒前
5秒前
微笑应助puluxiuka采纳,获得10
5秒前
樱栀完成签到,获得积分20
5秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646