Predicting and Interpreting Protein Developability Via Transfer of Convolutional Sequence Representation

计算生物学 计算机科学 人工智能 机器学习 健身景观 代表(政治) 氨基酸 维数之咒 生物 生物化学 政治学 政治 社会学 人口学 法学 人口
作者
Alexander W. Golinski,Zachary D. Schmitz,Gregory H. Nielsen,Bryce Johnson,Diya Saha,Sandhya Appiah,Benjamin J. Hackel,Stefano Martiniani
出处
期刊:ACS Synthetic Biology [American Chemical Society]
卷期号:12 (9): 2600-2615 被引量:2
标识
DOI:10.1021/acssynbio.3c00196
摘要

Engineered proteins have emerged as novel diagnostics, therapeutics, and catalysts. Often, poor protein developability─quantified by expression, solubility, and stability─hinders utility. The ability to predict protein developability from amino acid sequence would reduce the experimental burden when selecting candidates. Recent advances in screening technologies enabled a high-throughput (HT) developability dataset for 105 of 1020 possible variants of protein ligand scaffold Gp2. In this work, we evaluate the ability of neural networks to learn a developability representation from a HT dataset and transfer this knowledge to predict recombinant expression beyond observed sequences. The model convolves learned amino acid properties to predict expression levels 44% closer to the experimental variance compared to a non-embedded control. Analysis of learned amino acid embeddings highlights the uniqueness of cysteine, the importance of hydrophobicity and charge, and the unimportance of aromaticity, when aiming to improve the developability of small proteins. We identify clusters of similar sequences with increased recombinant expression through nonlinear dimensionality reduction and we explore the inferred expression landscape via nested sampling. The analysis enables the first direct visualization of the fitness landscape and highlights the existence of evolutionary bottlenecks in sequence space giving rise to competing subpopulations of sequences with different developability. The work advances applied protein engineering efforts by predicting and interpreting protein scaffold expression from a limited dataset. Furthermore, our statistical mechanical treatment of the problem advances foundational efforts to characterize the structure of the protein fitness landscape and the amino acid characteristics that influence protein developability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天天蓝发布了新的文献求助10
刚刚
king发布了新的文献求助10
刚刚
科目三应助小石头采纳,获得10
刚刚
karstbing发布了新的文献求助30
1秒前
香蕉觅云应助心想事成采纳,获得10
1秒前
青于发布了新的文献求助10
1秒前
猫蒲发布了新的文献求助10
1秒前
2秒前
ximu完成签到,获得积分10
3秒前
英俊的铭应助xiaoyu采纳,获得10
3秒前
5秒前
CodeCraft应助GPTea采纳,获得10
6秒前
6秒前
yii完成签到,获得积分10
8秒前
Thien应助青于采纳,获得10
8秒前
哈哈哈发布了新的文献求助10
10秒前
在水一方应助luochunsheng采纳,获得10
10秒前
F-超哥发布了新的文献求助30
10秒前
11秒前
11秒前
浮游应助逗逗采纳,获得10
11秒前
kckckckckc完成签到 ,获得积分10
12秒前
13秒前
13秒前
chen发布了新的文献求助10
13秒前
14秒前
14秒前
乐乐应助霸气凡白采纳,获得10
14秒前
ylzylz发布了新的文献求助10
15秒前
LLP发布了新的文献求助10
15秒前
ximu发布了新的文献求助10
18秒前
英姑应助猫蒲采纳,获得10
18秒前
keyan123发布了新的文献求助10
18秒前
fairy完成签到 ,获得积分10
18秒前
20秒前
BowieHuang应助小红吃红薯采纳,获得10
21秒前
Hello应助阿九采纳,获得10
21秒前
研友_VZG7GZ应助kento采纳,获得50
23秒前
24秒前
painting应助彬彬采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563431
求助须知:如何正确求助?哪些是违规求助? 4648294
关于积分的说明 14684348
捐赠科研通 4590281
什么是DOI,文献DOI怎么找? 2518423
邀请新用户注册赠送积分活动 1491102
关于科研通互助平台的介绍 1462386