Predicting and Interpreting Protein Developability Via Transfer of Convolutional Sequence Representation

计算生物学 计算机科学 人工智能 机器学习 健身景观 代表(政治) 氨基酸 维数之咒 生物 生物化学 社会学 人口学 人口 政治 政治学 法学
作者
Alexander W. Golinski,Zachary D. Schmitz,Gregory H. Nielsen,Bryce Johnson,Diya Saha,Sandhya Appiah,Benjamin J. Hackel,Stefano Martiniani
出处
期刊:ACS Synthetic Biology [American Chemical Society]
卷期号:12 (9): 2600-2615 被引量:2
标识
DOI:10.1021/acssynbio.3c00196
摘要

Engineered proteins have emerged as novel diagnostics, therapeutics, and catalysts. Often, poor protein developability─quantified by expression, solubility, and stability─hinders utility. The ability to predict protein developability from amino acid sequence would reduce the experimental burden when selecting candidates. Recent advances in screening technologies enabled a high-throughput (HT) developability dataset for 105 of 1020 possible variants of protein ligand scaffold Gp2. In this work, we evaluate the ability of neural networks to learn a developability representation from a HT dataset and transfer this knowledge to predict recombinant expression beyond observed sequences. The model convolves learned amino acid properties to predict expression levels 44% closer to the experimental variance compared to a non-embedded control. Analysis of learned amino acid embeddings highlights the uniqueness of cysteine, the importance of hydrophobicity and charge, and the unimportance of aromaticity, when aiming to improve the developability of small proteins. We identify clusters of similar sequences with increased recombinant expression through nonlinear dimensionality reduction and we explore the inferred expression landscape via nested sampling. The analysis enables the first direct visualization of the fitness landscape and highlights the existence of evolutionary bottlenecks in sequence space giving rise to competing subpopulations of sequences with different developability. The work advances applied protein engineering efforts by predicting and interpreting protein scaffold expression from a limited dataset. Furthermore, our statistical mechanical treatment of the problem advances foundational efforts to characterize the structure of the protein fitness landscape and the amino acid characteristics that influence protein developability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明月欣完成签到,获得积分10
刚刚
刚刚
1秒前
可爱的函函应助Jupiter采纳,获得10
1秒前
lan发布了新的文献求助10
1秒前
严西完成签到,获得积分10
2秒前
啦啦咔嘞完成签到,获得积分10
2秒前
伶俐从筠完成签到 ,获得积分10
2秒前
lina完成签到,获得积分10
2秒前
YangD_H完成签到,获得积分10
2秒前
yxy完成签到 ,获得积分10
3秒前
自觉灵凡完成签到,获得积分10
3秒前
科目三应助123采纳,获得10
3秒前
4秒前
唯美完成签到,获得积分10
4秒前
scanker1981完成签到,获得积分10
5秒前
5秒前
科研通AI2S应助文静的柚子采纳,获得10
5秒前
英勇的电话完成签到,获得积分20
6秒前
6秒前
刻苦的黑米完成签到,获得积分10
7秒前
研友_VZG64n完成签到,获得积分10
7秒前
wanci应助seaya采纳,获得10
8秒前
dd驳回了CodeCraft应助
8秒前
入暖完成签到,获得积分10
8秒前
9秒前
宋开心完成签到,获得积分10
9秒前
小小高完成签到 ,获得积分10
11秒前
爆米花应助lan采纳,获得10
11秒前
11秒前
afterall完成签到 ,获得积分10
12秒前
shim完成签到,获得积分10
12秒前
Owen应助入暖采纳,获得10
12秒前
Scidog完成签到,获得积分10
13秒前
SciGPT应助风趣采白采纳,获得10
13秒前
领导范儿应助聪明帅哥采纳,获得10
13秒前
13秒前
iNk应助科研通管家采纳,获得20
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
xiaojcom应助科研通管家采纳,获得10
14秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158979
求助须知:如何正确求助?哪些是违规求助? 2810153
关于积分的说明 7886308
捐赠科研通 2468968
什么是DOI,文献DOI怎么找? 1314533
科研通“疑难数据库(出版商)”最低求助积分说明 630640
版权声明 602012