Powerful Backtests for Historical Simulation Expected Shortfall Models

预期短缺 计量经济学 风险价值 计算机科学 建设性的 蒙特卡罗方法 精算学 经济 风险管理 数学 财务 统计 过程(计算) 操作系统
作者
Zaichao Du,Pei Pei,Xuhui Wang,Tao Yang
出处
期刊:Journal of Business & Economic Statistics [Informa]
卷期号:42 (3): 864-874 被引量:3
标识
DOI:10.1080/07350015.2023.2252881
摘要

AbstractSince 2016, the Basel Committee on Banking Supervision has regulated banks to switch from a Value-at-Risk (VaR) to an Expected Shortfall (ES) approach to measuring the market risk and calculating the capital requirement. In the transition from VaR to ES, the major challenge faced by financial institutions is the lack of simple but powerful tools for evaluating ES forecasts (i.e., backtesting ES). This article first shows that the unconditional backtest is inconsistent in evaluating the most popular Historical Simulation (HS) and Filtered Historical Simulation (FHS) ES models, with power even less than the nominal level in large samples. To overcome this problem, we propose a new class of conditional backtests for ES that are powerful against a large class of alternatives. We establish the asymptotic properties of the tests, and investigate their finite sample performance through some Monte Carlo simulations. An empirical application to stock indices data highlights the merits of our method.KEYWORDS: BacktestExpected shortfallHistorical simulationFiltered historical simulationRisk management AcknowledgmentsWe would like to thank two anonymous referees, the associate editor and editor for their constructive comments that have significantly improved the article. We would also like to thank Juan Carlos Escanciano, Cheng Liu, Xi Qu, and the participants of 7th Annual Meeting of Young Econometricians in Asia-Pacific for their helpful comments. All errors are our own.Disclosure StatementThe authors report there are no competing interests to declare.Notes1 Some papers propose backtesting ES by backtesting multiple VaRs, see for example, Emmer, Tasche, and Kratz (Citation2015), Kratz, Lok, and McNeil (Citation2018), Couperier and Leymarie (Citation2020) as well as the related papers by Hurlin and Tokpavi (Citation2006), Pérignon and Smith (Citation2008) and Colletaz, Hurlin, and Perignon (Citation2013).2 HS and FHS methods use unconditional quantiles of raw data or standardized innovations, respectively, to forecast conditional quantiles and further calculate ES of asset returns.3 Our argument is straightforward, as we show that unconditional backtests for HS and FHS ES are like evaluating the empirical cdf at the 5% empirical quantile, which equals 5% under both the null and alternative hypotheses.4 The cumulative violation process is the integral of the violations over the coverage level in the left tail and accumulates all violations in the left tail just like the ES accumulating the VaRs in the left tail. Recall that violations are indicators for whether portfolio losses exceed the VaR.5 Barone-Adesi, Giannopoulos, and Vosper (Citation1999) use bootstrapped standardized residuals to approximate the distribution of εt, while another method is using the empirical cdf of standardized residuals, see for example, Gao and Song (Citation2008) and Escanciano and Pei (Citation2012). We follow the second method here, although we expect both methods to perform similarly as sample size goes to infinity.6 A specification of the conditional distribution Ft(·,Ωt−1,θ0) is assumed for DE's tests, which are originally introduced for parametric distributions, but, as pointed out in Footnote 6 of DE, they are readily extended to semiparametric specifications like those considered here, especially for cases with negligible estimation effects (see Assumption A4). We can actually show this using a similar argument as our proof for Theorem 3 with g1∗ replaced by Ht−j,α(θ0)−α/2, j≥1.7 Su et al. (Citation2021) develop an empirical likelihood unconditional backtest for ES, which requires less finite moments than existing backtests and allows for robustness to heavier tails. However, their test requires the standardized innovation to follow a parametric distribution with Lipschitz continuous density function, which is not satisfied for the HS and FHS models considered here.8 They differ in how the parameter θ0 of the HS or FHS model is estimated. In the recursive scheme, the estimator θ̂t is computed with all the sample available up to time t. In the rolling scheme, only the last R values of the series are used to estimate θ̂t, that is, θ̂t is constructed from the sample at periods s=t−R+1,…,t. Finally, in the fixed scheme, the parameter is not updated when new observations become available.9 They consider a Box-Pierce type test given by P∑j=1mρHt−j,α(θ0)−α/22.10 Actually, our method can also be extended to the choices of g(Ωt−1)=g2∗(Yt−1,Yt−2):=E[Ht,α(θ0)|Yt−1,Yt−2] and g(Ωt−1)=g3∗(Yt−1,Yt−2,Yt−3):=E[Ht,α(θ0)|Yt−1,Yt−2,Yt−3], and then our test will be powerful against alternatives under which E[Ht,α(θ0)−α/2|Yt−1,Yt−2]≠0, and E[Ht,α(θ0)−α/2|Yt−1,Yt−2,Yt−3]≠0, respectively. However, the resulting tests will be a little bit complicated then.11 The Legendre polynomials bM(u) are defined as bM(u)=1M!dMduM[(u2−u)M], where M is a nonnegative integer and u∈[0,1]. The first several Legendre polynomials are b0(u)=1, b1(u)=2u−1, b2(u)=6u2−6u+1, and b3(u)=20u3−30u2+12u−1.12 We thank one of the referees for suggesting studying the interesting alternatives with structural breaks.13 For FHS ES models, Novales and Garcia-Jorcano (Citation2019) report low power of the unconditional backtests for some alternatives in their simulations, although they don't raise this issue up or justify it theoretically. For HS or FHS VaR models, Pérignon and Smith (Citation2008) and Escanciano and Pei (Citation2012) report low power of the unconditional backtests for some alternatives in their simulations.14 See for example, Van der Vaart (Citation1998).Additional informationFundingZaichao Du's work was supported by National Natural Science Foundation of China, 72173029, Innovative Research Groups Project of the National Natural Science Foundation of China, 72121002, and the Innovation Program of Shanghai Municipal Education Commission, 2023SKZD01.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keke驳回了36456657应助
1秒前
徐徐徐徐完成签到 ,获得积分10
2秒前
张yy发布了新的文献求助10
2秒前
尼斯卡完成签到,获得积分10
4秒前
风中的蜜蜂完成签到,获得积分10
4秒前
李健应助浪而而采纳,获得10
5秒前
慈祥的绮兰完成签到 ,获得积分10
7秒前
BQ完成签到,获得积分10
7秒前
李浅墨完成签到 ,获得积分10
8秒前
tingfeng完成签到,获得积分10
9秒前
MT完成签到 ,获得积分10
9秒前
陈居居发布了新的文献求助10
9秒前
搜集达人应助Hey采纳,获得10
9秒前
13秒前
张yy完成签到,获得积分20
13秒前
cxlhzq完成签到,获得积分10
15秒前
Drsong完成签到 ,获得积分10
16秒前
浪而而完成签到,获得积分10
17秒前
沉默傲芙完成签到 ,获得积分10
18秒前
公冶君浩发布了新的文献求助10
18秒前
nini完成签到,获得积分10
19秒前
Leo完成签到 ,获得积分10
19秒前
俏皮诺言完成签到,获得积分10
20秒前
九零后无心完成签到,获得积分10
20秒前
duoduozs完成签到,获得积分10
21秒前
隐形曼青应助王海海采纳,获得10
21秒前
靓丽的花卷完成签到,获得积分10
25秒前
25秒前
25秒前
华北走地鸡完成签到,获得积分10
26秒前
姜水完成签到,获得积分10
27秒前
沙沙完成签到 ,获得积分10
28秒前
tyd完成签到,获得积分10
28秒前
小琦无敌完成签到,获得积分10
28秒前
腾腾完成签到 ,获得积分10
28秒前
观妙散人完成签到,获得积分10
29秒前
科研通AI2S应助难摧采纳,获得10
29秒前
29秒前
Hey发布了新的文献求助10
30秒前
新火新茶完成签到 ,获得积分10
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146931
求助须知:如何正确求助?哪些是违规求助? 2798176
关于积分的说明 7826946
捐赠科研通 2454756
什么是DOI,文献DOI怎么找? 1306446
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565