亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Powerful Backtests for Historical Simulation Expected Shortfall Models

预期短缺 计量经济学 风险价值 计算机科学 建设性的 蒙特卡罗方法 精算学 经济 风险管理 数学 财务 统计 过程(计算) 操作系统
作者
Zaichao Du,Pei Pei,Xuhui Wang,Tao Yang
出处
期刊:Journal of Business & Economic Statistics [Taylor & Francis]
卷期号:42 (3): 864-874 被引量:5
标识
DOI:10.1080/07350015.2023.2252881
摘要

AbstractSince 2016, the Basel Committee on Banking Supervision has regulated banks to switch from a Value-at-Risk (VaR) to an Expected Shortfall (ES) approach to measuring the market risk and calculating the capital requirement. In the transition from VaR to ES, the major challenge faced by financial institutions is the lack of simple but powerful tools for evaluating ES forecasts (i.e., backtesting ES). This article first shows that the unconditional backtest is inconsistent in evaluating the most popular Historical Simulation (HS) and Filtered Historical Simulation (FHS) ES models, with power even less than the nominal level in large samples. To overcome this problem, we propose a new class of conditional backtests for ES that are powerful against a large class of alternatives. We establish the asymptotic properties of the tests, and investigate their finite sample performance through some Monte Carlo simulations. An empirical application to stock indices data highlights the merits of our method.KEYWORDS: BacktestExpected shortfallHistorical simulationFiltered historical simulationRisk management AcknowledgmentsWe would like to thank two anonymous referees, the associate editor and editor for their constructive comments that have significantly improved the article. We would also like to thank Juan Carlos Escanciano, Cheng Liu, Xi Qu, and the participants of 7th Annual Meeting of Young Econometricians in Asia-Pacific for their helpful comments. All errors are our own.Disclosure StatementThe authors report there are no competing interests to declare.Notes1 Some papers propose backtesting ES by backtesting multiple VaRs, see for example, Emmer, Tasche, and Kratz (Citation2015), Kratz, Lok, and McNeil (Citation2018), Couperier and Leymarie (Citation2020) as well as the related papers by Hurlin and Tokpavi (Citation2006), Pérignon and Smith (Citation2008) and Colletaz, Hurlin, and Perignon (Citation2013).2 HS and FHS methods use unconditional quantiles of raw data or standardized innovations, respectively, to forecast conditional quantiles and further calculate ES of asset returns.3 Our argument is straightforward, as we show that unconditional backtests for HS and FHS ES are like evaluating the empirical cdf at the 5% empirical quantile, which equals 5% under both the null and alternative hypotheses.4 The cumulative violation process is the integral of the violations over the coverage level in the left tail and accumulates all violations in the left tail just like the ES accumulating the VaRs in the left tail. Recall that violations are indicators for whether portfolio losses exceed the VaR.5 Barone-Adesi, Giannopoulos, and Vosper (Citation1999) use bootstrapped standardized residuals to approximate the distribution of εt, while another method is using the empirical cdf of standardized residuals, see for example, Gao and Song (Citation2008) and Escanciano and Pei (Citation2012). We follow the second method here, although we expect both methods to perform similarly as sample size goes to infinity.6 A specification of the conditional distribution Ft(·,Ωt−1,θ0) is assumed for DE's tests, which are originally introduced for parametric distributions, but, as pointed out in Footnote 6 of DE, they are readily extended to semiparametric specifications like those considered here, especially for cases with negligible estimation effects (see Assumption A4). We can actually show this using a similar argument as our proof for Theorem 3 with g1∗ replaced by Ht−j,α(θ0)−α/2, j≥1.7 Su et al. (Citation2021) develop an empirical likelihood unconditional backtest for ES, which requires less finite moments than existing backtests and allows for robustness to heavier tails. However, their test requires the standardized innovation to follow a parametric distribution with Lipschitz continuous density function, which is not satisfied for the HS and FHS models considered here.8 They differ in how the parameter θ0 of the HS or FHS model is estimated. In the recursive scheme, the estimator θ̂t is computed with all the sample available up to time t. In the rolling scheme, only the last R values of the series are used to estimate θ̂t, that is, θ̂t is constructed from the sample at periods s=t−R+1,…,t. Finally, in the fixed scheme, the parameter is not updated when new observations become available.9 They consider a Box-Pierce type test given by P∑j=1mρHt−j,α(θ0)−α/22.10 Actually, our method can also be extended to the choices of g(Ωt−1)=g2∗(Yt−1,Yt−2):=E[Ht,α(θ0)|Yt−1,Yt−2] and g(Ωt−1)=g3∗(Yt−1,Yt−2,Yt−3):=E[Ht,α(θ0)|Yt−1,Yt−2,Yt−3], and then our test will be powerful against alternatives under which E[Ht,α(θ0)−α/2|Yt−1,Yt−2]≠0, and E[Ht,α(θ0)−α/2|Yt−1,Yt−2,Yt−3]≠0, respectively. However, the resulting tests will be a little bit complicated then.11 The Legendre polynomials bM(u) are defined as bM(u)=1M!dMduM[(u2−u)M], where M is a nonnegative integer and u∈[0,1]. The first several Legendre polynomials are b0(u)=1, b1(u)=2u−1, b2(u)=6u2−6u+1, and b3(u)=20u3−30u2+12u−1.12 We thank one of the referees for suggesting studying the interesting alternatives with structural breaks.13 For FHS ES models, Novales and Garcia-Jorcano (Citation2019) report low power of the unconditional backtests for some alternatives in their simulations, although they don't raise this issue up or justify it theoretically. For HS or FHS VaR models, Pérignon and Smith (Citation2008) and Escanciano and Pei (Citation2012) report low power of the unconditional backtests for some alternatives in their simulations.14 See for example, Van der Vaart (Citation1998).Additional informationFundingZaichao Du's work was supported by National Natural Science Foundation of China, 72173029, Innovative Research Groups Project of the National Natural Science Foundation of China, 72121002, and the Innovation Program of Shanghai Municipal Education Commission, 2023SKZD01.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独剑完成签到 ,获得积分10
13秒前
28秒前
NexusExplorer应助dllneu采纳,获得10
35秒前
JamesPei应助地尔硫卓采纳,获得10
37秒前
Yoanna举报Dihuan求助涉嫌违规
1分钟前
大气的画板完成签到 ,获得积分10
1分钟前
葛力发布了新的文献求助10
1分钟前
2分钟前
2分钟前
地尔硫卓发布了新的文献求助10
2分钟前
Amberwdd发布了新的文献求助30
2分钟前
2分钟前
弹指一挥间完成签到 ,获得积分10
2分钟前
dllneu发布了新的文献求助10
2分钟前
桐桐应助Amberwdd采纳,获得10
2分钟前
Amberwdd完成签到,获得积分10
3分钟前
dllneu完成签到,获得积分10
3分钟前
徐凤年完成签到,获得积分10
3分钟前
Sunny完成签到,获得积分10
3分钟前
Lucas应助诉与山风听采纳,获得10
3分钟前
Orange应助白桃采纳,获得10
4分钟前
量子星尘发布了新的文献求助20
4分钟前
4分钟前
科研17发布了新的文献求助10
4分钟前
5分钟前
葛力发布了新的文献求助10
5分钟前
5分钟前
笨笨山芙完成签到 ,获得积分10
5分钟前
5分钟前
科研通AI5应助科研通管家采纳,获得10
6分钟前
6分钟前
Orange应助科研17采纳,获得10
6分钟前
嗯哼完成签到,获得积分10
6分钟前
6分钟前
6分钟前
胖小羊完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4945446
求助须知:如何正确求助?哪些是违规求助? 4209913
关于积分的说明 13086150
捐赠科研通 3990100
什么是DOI,文献DOI怎么找? 2184481
邀请新用户注册赠送积分活动 1199808
关于科研通互助平台的介绍 1113227