IDRes: Identity-Based Respiration Monitoring System for Digital Twins Enabled Healthcare

计算机科学 信号(编程语言) 实时计算 身份(音乐) 声纳 人工智能 计算机安全 计算机视觉 声学 物理 程序设计语言
作者
Kai Fang,Jiefan Qiu,Tingting Wang,Kai‐Lu Zheng,Ling-Ling Xing,Keji Mao,Kaikai Chi
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (10): 3333-3348
标识
DOI:10.1109/jsac.2023.3310095
摘要

Currently, powerful and ubiquitous mobile devices provide an opportunity to map physical conditions to cyberspace and realize Digital Twins enabled Healthcare (DTeH). Especially, the impact of the COVID-19 epidemic renders it necessary to keep an eye on the changing trend of respiration. Long-term respiration monitoring helps to assess personal health status and thus becomes an important issue in DTeH. However, previous mobile device-assistant methods mostly implement the monitoring via short-time detection in a best-effort way and with less consideration of identity recognition, the only mean to bind physical vital signs into personal profiles in digital twins space. Thus, it is necessary to introduce the identification to complete string multiple short-time detections and form long-term personal monitoring. To this end, we propose IDRes, an identity-based respiration monitoring system for DTeH. This system employs mobile devices to generate a high-frequency sonar signal to complete respiration detection and identity recognition. As well as it also estimates the respiration rate by tracking the phase change of the sonar signal and recognizes identity via the Doppler frequency shift of the signal to capture characteristics of chest movement. Moreover, via band-pass filtering to remove the low-frequency voice component of the received signals, the usage of the high-frequency sonar signal also enhances security at the physical level. At last, we conduct a series of experiments under different conditions. Experimental results illustrate that IDRes achieves the mean detection error of 0.49bpm with over 93.3% recognition accuracy, and manifest that IDRes can satisfy the requirements of mapping the accurate vital sign data to the personal profile of DTeH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
充电宝应助碧蓝的安筠采纳,获得10
刚刚
KAKIN应助机智的无心采纳,获得10
1秒前
任性的鼠标完成签到,获得积分10
2秒前
lalal完成签到,获得积分10
2秒前
ada完成签到,获得积分20
2秒前
3秒前
你好发布了新的文献求助10
4秒前
美国giao哥完成签到,获得积分10
4秒前
Yogita完成签到,获得积分0
4秒前
顾矜应助电闪采纳,获得10
5秒前
我爱学习完成签到,获得积分10
6秒前
7秒前
9秒前
9秒前
10秒前
Ava应助望仔采纳,获得10
10秒前
Hello应助更远的天空采纳,获得10
10秒前
大模型应助苗条的谷秋采纳,获得10
10秒前
万能图书馆应助善良友安采纳,获得10
11秒前
11秒前
11秒前
123发布了新的文献求助10
13秒前
潇洒的白昼发布了新的文献求助100
13秒前
fairy发布了新的文献求助30
14秒前
14秒前
隐形曼青应助jrzsy采纳,获得10
15秒前
beyond发布了新的文献求助10
15秒前
17秒前
222发布了新的文献求助30
17秒前
yyy完成签到,获得积分10
20秒前
电闪发布了新的文献求助10
22秒前
Mr.Reese完成签到,获得积分10
22秒前
CAOHOU应助善良友安采纳,获得10
23秒前
善学以致用应助六点一横采纳,获得10
23秒前
23秒前
我来回收数据完成签到,获得积分10
24秒前
25秒前
25秒前
25秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961131
求助须知:如何正确求助?哪些是违规求助? 3507413
关于积分的说明 11135967
捐赠科研通 3239888
什么是DOI,文献DOI怎么找? 1790452
邀请新用户注册赠送积分活动 872420
科研通“疑难数据库(出版商)”最低求助积分说明 803152