IDRes: Identity-Based Respiration Monitoring System for Digital Twins Enabled Healthcare

计算机科学 信号(编程语言) 实时计算 身份(音乐) 声纳 人工智能 计算机安全 计算机视觉 声学 物理 程序设计语言
作者
Kai Fang,Jiefan Qiu,Tingting Wang,Kai‐Lu Zheng,Ling-Ling Xing,Keji Mao,Kaikai Chi
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (10): 3333-3348
标识
DOI:10.1109/jsac.2023.3310095
摘要

Currently, powerful and ubiquitous mobile devices provide an opportunity to map physical conditions to cyberspace and realize Digital Twins enabled Healthcare (DTeH). Especially, the impact of the COVID-19 epidemic renders it necessary to keep an eye on the changing trend of respiration. Long-term respiration monitoring helps to assess personal health status and thus becomes an important issue in DTeH. However, previous mobile device-assistant methods mostly implement the monitoring via short-time detection in a best-effort way and with less consideration of identity recognition, the only mean to bind physical vital signs into personal profiles in digital twins space. Thus, it is necessary to introduce the identification to complete string multiple short-time detections and form long-term personal monitoring. To this end, we propose IDRes, an identity-based respiration monitoring system for DTeH. This system employs mobile devices to generate a high-frequency sonar signal to complete respiration detection and identity recognition. As well as it also estimates the respiration rate by tracking the phase change of the sonar signal and recognizes identity via the Doppler frequency shift of the signal to capture characteristics of chest movement. Moreover, via band-pass filtering to remove the low-frequency voice component of the received signals, the usage of the high-frequency sonar signal also enhances security at the physical level. At last, we conduct a series of experiments under different conditions. Experimental results illustrate that IDRes achieves the mean detection error of 0.49bpm with over 93.3% recognition accuracy, and manifest that IDRes can satisfy the requirements of mapping the accurate vital sign data to the personal profile of DTeH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jaxon完成签到,获得积分10
1秒前
YMY完成签到,获得积分10
1秒前
kiki完成签到 ,获得积分10
1秒前
酷波er应助apool采纳,获得30
2秒前
3秒前
sufeisunny完成签到 ,获得积分10
3秒前
无花果应助QQ不需要昵称采纳,获得10
3秒前
磊磊猪完成签到,获得积分10
4秒前
休思发布了新的文献求助10
4秒前
4秒前
Nico多多看paper完成签到,获得积分10
4秒前
zzh0409km发布了新的文献求助10
4秒前
无欲无求傻傻完成签到,获得积分10
5秒前
Earnestlee完成签到,获得积分10
6秒前
恣意发布了新的文献求助10
6秒前
范先生完成签到,获得积分10
7秒前
子车茗应助体贴的青烟采纳,获得10
7秒前
7秒前
perovskite完成签到,获得积分10
8秒前
新楚完成签到 ,获得积分10
8秒前
orixero应助研妍采纳,获得10
9秒前
哒哒哒哒完成签到,获得积分10
9秒前
1111完成签到 ,获得积分10
9秒前
9秒前
克丽发布了新的文献求助10
9秒前
布丁完成签到,获得积分10
10秒前
粒子耶完成签到,获得积分10
10秒前
sonya发布了新的文献求助20
10秒前
闪闪星星完成签到,获得积分10
10秒前
XuanZhang完成签到,获得积分10
10秒前
0109完成签到,获得积分10
11秒前
菜鸡学VASP完成签到 ,获得积分10
11秒前
erfc完成签到,获得积分10
11秒前
12秒前
阿巴阿巴阿巴完成签到,获得积分10
12秒前
陈予完成签到,获得积分10
12秒前
落尘完成签到,获得积分10
12秒前
13秒前
xiaowen完成签到,获得积分10
13秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244890
求助须知:如何正确求助?哪些是违规求助? 2888504
关于积分的说明 8253582
捐赠科研通 2556990
什么是DOI,文献DOI怎么找? 1385557
科研通“疑难数据库(出版商)”最低求助积分说明 650188
邀请新用户注册赠送积分活动 626331