IDRes: Identity-Based Respiration Monitoring System for Digital Twins Enabled Healthcare

计算机科学 信号(编程语言) 实时计算 身份(音乐) 声纳 人工智能 计算机安全 计算机视觉 声学 物理 程序设计语言
作者
Kai Fang,Jiefan Qiu,Tingting Wang,Kai‐Lu Zheng,Ling-Ling Xing,Keji Mao,Kaikai Chi
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (10): 3333-3348
标识
DOI:10.1109/jsac.2023.3310095
摘要

Currently, powerful and ubiquitous mobile devices provide an opportunity to map physical conditions to cyberspace and realize Digital Twins enabled Healthcare (DTeH). Especially, the impact of the COVID-19 epidemic renders it necessary to keep an eye on the changing trend of respiration. Long-term respiration monitoring helps to assess personal health status and thus becomes an important issue in DTeH. However, previous mobile device-assistant methods mostly implement the monitoring via short-time detection in a best-effort way and with less consideration of identity recognition, the only mean to bind physical vital signs into personal profiles in digital twins space. Thus, it is necessary to introduce the identification to complete string multiple short-time detections and form long-term personal monitoring. To this end, we propose IDRes, an identity-based respiration monitoring system for DTeH. This system employs mobile devices to generate a high-frequency sonar signal to complete respiration detection and identity recognition. As well as it also estimates the respiration rate by tracking the phase change of the sonar signal and recognizes identity via the Doppler frequency shift of the signal to capture characteristics of chest movement. Moreover, via band-pass filtering to remove the low-frequency voice component of the received signals, the usage of the high-frequency sonar signal also enhances security at the physical level. At last, we conduct a series of experiments under different conditions. Experimental results illustrate that IDRes achieves the mean detection error of 0.49bpm with over 93.3% recognition accuracy, and manifest that IDRes can satisfy the requirements of mapping the accurate vital sign data to the personal profile of DTeH.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
2秒前
liyifengli完成签到,获得积分10
2秒前
大个应助cherry采纳,获得10
3秒前
5秒前
林大侠发布了新的文献求助10
6秒前
tao完成签到 ,获得积分10
6秒前
萌only发布了新的文献求助50
6秒前
哇哈哈完成签到,获得积分20
7秒前
郭佳怡发布了新的文献求助10
8秒前
8秒前
所所应助Yaseen采纳,获得10
8秒前
刮风这天完成签到,获得积分10
10秒前
10秒前
10秒前
oo发布了新的文献求助10
10秒前
11秒前
明朗发布了新的文献求助10
12秒前
12秒前
Junyi发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
Owen应助虚心飞鸟采纳,获得50
13秒前
酷波er应助nicolight采纳,获得10
13秒前
14秒前
村村发布了新的文献求助10
14秒前
大方嵩发布了新的文献求助10
16秒前
yr应助andrele采纳,获得30
16秒前
17秒前
cherry发布了新的文献求助10
17秒前
小王发布了新的文献求助10
17秒前
17秒前
QIEZI关注了科研通微信公众号
19秒前
CipherSage应助炮炮公主采纳,获得10
19秒前
lhj完成签到,获得积分10
20秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771499
求助须知:如何正确求助?哪些是违规求助? 5591993
关于积分的说明 15427668
捐赠科研通 4904815
什么是DOI,文献DOI怎么找? 2639018
邀请新用户注册赠送积分活动 1586798
关于科研通互助平台的介绍 1541797