IDRes: Identity-Based Respiration Monitoring System for Digital Twins Enabled Healthcare

计算机科学 信号(编程语言) 实时计算 身份(音乐) 声纳 人工智能 计算机安全 计算机视觉 声学 物理 程序设计语言
作者
Kai Fang,Jiefan Qiu,Tingting Wang,Kai‐Lu Zheng,Ling-Ling Xing,Keji Mao,Kaikai Chi
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (10): 3333-3348
标识
DOI:10.1109/jsac.2023.3310095
摘要

Currently, powerful and ubiquitous mobile devices provide an opportunity to map physical conditions to cyberspace and realize Digital Twins enabled Healthcare (DTeH). Especially, the impact of the COVID-19 epidemic renders it necessary to keep an eye on the changing trend of respiration. Long-term respiration monitoring helps to assess personal health status and thus becomes an important issue in DTeH. However, previous mobile device-assistant methods mostly implement the monitoring via short-time detection in a best-effort way and with less consideration of identity recognition, the only mean to bind physical vital signs into personal profiles in digital twins space. Thus, it is necessary to introduce the identification to complete string multiple short-time detections and form long-term personal monitoring. To this end, we propose IDRes, an identity-based respiration monitoring system for DTeH. This system employs mobile devices to generate a high-frequency sonar signal to complete respiration detection and identity recognition. As well as it also estimates the respiration rate by tracking the phase change of the sonar signal and recognizes identity via the Doppler frequency shift of the signal to capture characteristics of chest movement. Moreover, via band-pass filtering to remove the low-frequency voice component of the received signals, the usage of the high-frequency sonar signal also enhances security at the physical level. At last, we conduct a series of experiments under different conditions. Experimental results illustrate that IDRes achieves the mean detection error of 0.49bpm with over 93.3% recognition accuracy, and manifest that IDRes can satisfy the requirements of mapping the accurate vital sign data to the personal profile of DTeH.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cassie发布了新的文献求助30
1秒前
li发布了新的文献求助10
1秒前
1秒前
2秒前
偏偏意气用事完成签到,获得积分10
3秒前
共享精神应助Liens采纳,获得10
3秒前
Cassie发布了新的文献求助10
4秒前
4秒前
4秒前
Hello应助可靠的寒风采纳,获得10
4秒前
液晶屏99完成签到,获得积分10
4秒前
长生完成签到,获得积分10
4秒前
随风556完成签到,获得积分10
4秒前
张琴英发布了新的文献求助10
4秒前
wkc发布了新的文献求助30
5秒前
万能图书馆应助浅夏采纳,获得10
5秒前
简单完成签到,获得积分20
7秒前
CarolineSH完成签到 ,获得积分10
7秒前
7秒前
长生发布了新的文献求助10
8秒前
左右发布了新的文献求助10
8秒前
Lee完成签到,获得积分10
8秒前
小蘑菇应助lxn采纳,获得10
8秒前
Alpha完成签到,获得积分10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
传奇3应助IamPhenomenal采纳,获得10
9秒前
9秒前
10秒前
10秒前
10秒前
xiaozhou完成签到 ,获得积分10
10秒前
Joy_Huizhen完成签到,获得积分10
11秒前
13秒前
13秒前
彩色冥幽发布了新的文献求助10
13秒前
顾矜应助紫菜采纳,获得10
13秒前
Tink完成签到,获得积分0
14秒前
15秒前
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610445
求助须知:如何正确求助?哪些是违规求助? 4694923
关于积分的说明 14885144
捐赠科研通 4722453
什么是DOI,文献DOI怎么找? 2545155
邀请新用户注册赠送积分活动 1509949
关于科研通互助平台的介绍 1473063