Time efficiency, occlusal morphology, and internal fit of anatomic contour crowns designed by dental software powered by generative adversarial network: A comparative study

牙冠(牙科) 软件 生成对抗网络 桥台 显著性差异 口腔正畸科 牙科 计算机科学 医学 数学 人工智能 工程类 统计 图像(数学) 结构工程 程序设计语言
作者
Junho Cho,Yuseung Yi,Jinhyeok Choi,Junseong Ahn,Hyung‐In Yoon,Burak Yılmaz
出处
期刊:Journal of Dentistry [Elsevier]
卷期号:138: 104739-104739 被引量:10
标识
DOI:10.1016/j.jdent.2023.104739
摘要

To evaluate the time efficiency, occlusal morphology, and internal fit of dental crowns designed using generative adversarial network (GAN)-based dental software compared to conventional dental software. Thirty datasets of partial arch scans for prepared posterior teeth were analyzed. Each crown was designed on each abutment using GAN-based software (AI) and conventional dental software (non-AI). The AI and non-AI groups were compared in terms of time efficiency by measuring the elapsed work time. The difference in the occlusal morphology of the crowns before and after design optimization and the internal fit of the crown to the prepared abutment were also evaluated by superimposition for each software. Data were analyzed using independent t tests or Mann–Whitney test with statistical significance (α=.05). The working time was significantly less for the AI group than the non-AI group at T1, T5, and T6 (P≤.043). The working time with AI was significantly shorter at T1, T3, T5, and T6 for the intraoral scan (P≤.036). Only at T2 (P≤.001) did the cast scan show a significant difference between the two groups. The crowns in the AI group showed less deviation in occlusal morphology and significantly better internal fit to the abutment than those in the non-AI group (both P<.001). Crowns designed by AI software showed improved outcomes than that designed by non-AI software, in terms of time efficiency, difference in occlusal morphology, and internal fit. The GAN-based software showed better time efficiency and less deviation in occlusal morphology during the design process than the conventional software, suggesting a higher probability of optimized outcomes of crown design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Laity完成签到,获得积分10
1秒前
1秒前
健忘捕发布了新的文献求助10
1秒前
林林林发布了新的文献求助10
2秒前
ok完成签到 ,获得积分10
3秒前
乐乐应助wewe采纳,获得30
3秒前
3秒前
拥有八根情丝完成签到 ,获得积分10
4秒前
科研通AI5应助Rex采纳,获得10
5秒前
6秒前
情怀应助樱桃小丸子采纳,获得10
7秒前
好难啊发布了新的文献求助10
8秒前
8秒前
12秒前
13秒前
13秒前
wewe完成签到,获得积分20
14秒前
李大爷发布了新的文献求助10
14秒前
Kevin完成签到,获得积分10
16秒前
酷炫的尔丝完成签到 ,获得积分10
16秒前
Hello应助标致的蛋挞采纳,获得50
17秒前
大个应助明亮的宁采纳,获得10
18秒前
Rainbow发布了新的文献求助10
18秒前
anyone发布了新的文献求助30
19秒前
充电宝应助SY采纳,获得10
20秒前
D先生完成签到,获得积分20
20秒前
yxt完成签到,获得积分10
20秒前
momo发布了新的文献求助10
21秒前
23秒前
苏照杭应助长度2到采纳,获得10
23秒前
24秒前
次我完成签到,获得积分10
24秒前
qisili关注了科研通微信公众号
25秒前
Owen应助李大爷采纳,获得10
26秒前
27秒前
脑洞疼应助迅速冰岚采纳,获得10
29秒前
NexusExplorer应助whoops采纳,获得10
29秒前
sweetbearm应助通~采纳,获得10
29秒前
VDC应助欢呼冰岚采纳,获得30
29秒前
Grayball应助hhl采纳,获得10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851