Time efficiency, occlusal morphology, and internal fit of anatomic contour crowns designed by dental software powered by generative adversarial network: A comparative study

牙冠(牙科) 软件 生成对抗网络 桥台 显著性差异 口腔正畸科 牙科 计算机科学 医学 数学 人工智能 工程类 统计 图像(数学) 结构工程 程序设计语言
作者
Junho Cho,Yuseung Yi,Jinhyeok Choi,Junseong Ahn,Hyung‐In Yoon,Burak Yılmaz
出处
期刊:Journal of Dentistry [Elsevier]
卷期号:138: 104739-104739 被引量:10
标识
DOI:10.1016/j.jdent.2023.104739
摘要

To evaluate the time efficiency, occlusal morphology, and internal fit of dental crowns designed using generative adversarial network (GAN)-based dental software compared to conventional dental software. Thirty datasets of partial arch scans for prepared posterior teeth were analyzed. Each crown was designed on each abutment using GAN-based software (AI) and conventional dental software (non-AI). The AI and non-AI groups were compared in terms of time efficiency by measuring the elapsed work time. The difference in the occlusal morphology of the crowns before and after design optimization and the internal fit of the crown to the prepared abutment were also evaluated by superimposition for each software. Data were analyzed using independent t tests or Mann–Whitney test with statistical significance (α=.05). The working time was significantly less for the AI group than the non-AI group at T1, T5, and T6 (P≤.043). The working time with AI was significantly shorter at T1, T3, T5, and T6 for the intraoral scan (P≤.036). Only at T2 (P≤.001) did the cast scan show a significant difference between the two groups. The crowns in the AI group showed less deviation in occlusal morphology and significantly better internal fit to the abutment than those in the non-AI group (both P<.001). Crowns designed by AI software showed improved outcomes than that designed by non-AI software, in terms of time efficiency, difference in occlusal morphology, and internal fit. The GAN-based software showed better time efficiency and less deviation in occlusal morphology during the design process than the conventional software, suggesting a higher probability of optimized outcomes of crown design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
支山柳发布了新的文献求助10
2秒前
勤恳傲儿发布了新的文献求助10
2秒前
所所应助小杨采纳,获得10
2秒前
奶糖最可爱完成签到,获得积分10
2秒前
醒醒完成签到 ,获得积分10
2秒前
小羊完成签到 ,获得积分10
3秒前
3秒前
3秒前
科目三应助stupid采纳,获得10
3秒前
你是我爹完成签到 ,获得积分10
3秒前
共享精神应助欣喜的广山采纳,获得10
4秒前
hhhhhhh发布了新的文献求助10
4秒前
lxb完成签到,获得积分10
4秒前
4秒前
wwz应助科研通管家采纳,获得10
5秒前
8R60d8应助科研通管家采纳,获得20
5秒前
zhao应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
xiaoming应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
Yziii应助科研通管家采纳,获得20
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
exy发布了新的文献求助10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
KK发布了新的文献求助10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
6秒前
6秒前
喵miao发布了新的文献求助10
6秒前
善学以致用应助玖梦采纳,获得10
6秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135520
求助须知:如何正确求助?哪些是违规求助? 2786434
关于积分的说明 7777268
捐赠科研通 2442340
什么是DOI,文献DOI怎么找? 1298524
科研通“疑难数据库(出版商)”最低求助积分说明 625143
版权声明 600847