Time efficiency, occlusal morphology, and internal fit of anatomic contour crowns designed by dental software powered by generative adversarial network: A comparative study

牙冠(牙科) 软件 生成对抗网络 桥台 显著性差异 口腔正畸科 牙科 计算机科学 医学 数学 人工智能 工程类 统计 图像(数学) 结构工程 程序设计语言
作者
Junho Cho,Yuseung Yi,Jinhyeok Choi,Junseong Ahn,Hyung‐In Yoon,Burak Yılmaz
出处
期刊:Journal of Dentistry [Elsevier BV]
卷期号:138: 104739-104739 被引量:16
标识
DOI:10.1016/j.jdent.2023.104739
摘要

To evaluate the time efficiency, occlusal morphology, and internal fit of dental crowns designed using generative adversarial network (GAN)-based dental software compared to conventional dental software. Thirty datasets of partial arch scans for prepared posterior teeth were analyzed. Each crown was designed on each abutment using GAN-based software (AI) and conventional dental software (non-AI). The AI and non-AI groups were compared in terms of time efficiency by measuring the elapsed work time. The difference in the occlusal morphology of the crowns before and after design optimization and the internal fit of the crown to the prepared abutment were also evaluated by superimposition for each software. Data were analyzed using independent t tests or Mann–Whitney test with statistical significance (α=.05). The working time was significantly less for the AI group than the non-AI group at T1, T5, and T6 (P≤.043). The working time with AI was significantly shorter at T1, T3, T5, and T6 for the intraoral scan (P≤.036). Only at T2 (P≤.001) did the cast scan show a significant difference between the two groups. The crowns in the AI group showed less deviation in occlusal morphology and significantly better internal fit to the abutment than those in the non-AI group (both P<.001). Crowns designed by AI software showed improved outcomes than that designed by non-AI software, in terms of time efficiency, difference in occlusal morphology, and internal fit. The GAN-based software showed better time efficiency and less deviation in occlusal morphology during the design process than the conventional software, suggesting a higher probability of optimized outcomes of crown design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Owen应助LXF采纳,获得10
1秒前
2秒前
2秒前
2秒前
今后应助keyanlv采纳,获得10
2秒前
3秒前
阿杰完成签到,获得积分10
3秒前
呆萌新之完成签到,获得积分10
4秒前
懒洋洋给懒洋洋的求助进行了留言
5秒前
ll发布了新的文献求助10
5秒前
6秒前
好好发布了新的文献求助10
6秒前
7秒前
苏洛发布了新的文献求助10
8秒前
知性的剑身完成签到,获得积分10
8秒前
8秒前
11秒前
xiongyuan完成签到,获得积分10
11秒前
逆天大脚完成签到,获得积分10
11秒前
斯文败类应助基一啊佳采纳,获得10
15秒前
喵喵完成签到 ,获得积分10
15秒前
搜集达人应助陈玉采纳,获得10
15秒前
15秒前
整齐的尔阳完成签到,获得积分10
17秒前
须眉交白完成签到,获得积分10
17秒前
18秒前
李健的小迷弟应助xiaobai采纳,获得10
19秒前
旺仔先生完成签到 ,获得积分10
19秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
苏洛完成签到,获得积分10
22秒前
22秒前
xgq发布了新的文献求助10
24秒前
25秒前
基一啊佳发布了新的文献求助10
27秒前
大力的飞莲完成签到,获得积分10
27秒前
LXF发布了新的文献求助10
29秒前
orixero应助迷路的寒云采纳,获得10
29秒前
30秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142068
求助须知:如何正确求助?哪些是违规求助? 4340366
关于积分的说明 13517250
捐赠科研通 4180249
什么是DOI,文献DOI怎么找? 2292347
邀请新用户注册赠送积分活动 1292930
关于科研通互助平台的介绍 1235425