已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting Antioxidant Synergism via Artificial Intelligence and Benchtop Data

抗氧化剂 机器学习 生化工程 TBARS公司 人工智能 脂质氧化 计算机科学 化学 抗氧化能力 生物系统 生物化学 生物 脂质过氧化 工程类
作者
Lucas B. Ayres,Tomás E. Benavidez,Armelle Varillas,Jeb R. Linton,Daniel C. Whitehead,Carlos D. García
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:71 (42): 15644-15655 被引量:1
标识
DOI:10.1021/acs.jafc.3c05462
摘要

Lipid oxidation is a major issue affecting products containing unsaturated fatty acids as ingredients or components, leading to the formation of low molecular weight species with diverse functional groups that impart off-odors and off-flavors. Aiming to control this process, antioxidants are commonly added to these products, often deployed as combinations of two or more compounds, a strategy that allows for lowering the amount used while boosting the total antioxidant capacity of the formulation. While this approach allows for minimizing the potential organoleptic and toxic effects of these compounds, predicting how these mixtures of antioxidants will behave has traditionally been one of the most challenging tasks, often leading to simple additive, antagonistic, or synergistic effects. Approaches to understanding these interactions have been predominantly empirically driven but thus far, inefficient and unable to account for the complexity and multifaceted nature of antioxidant responses. To address this current gap in knowledge, we describe the use of an artificial intelligence model based on deep learning architecture to predict the type of interaction (synergistic, additive, and antagonistic) of antioxidant combinations. Here, each mixture was associated with a combination index value (CI) and used as input for our model, which was challenged against a test (n = 140) data set. Despite the encouraging preliminary results, this algorithm failed to provide accurate predictions of oxidation experiments performed in-house using binary mixtures of phenolic antioxidants and a lard sample. To overcome this problem, the AI algorithm was then enhanced with various amounts of experimental data (antioxidant power data assessed by the TBARS assay), demonstrating the importance of having chemically relevant experimental data to enhance the model's performance and provide suitable predictions with statistical relevance. We believe the proposed method could be used as an auxiliary tool in benchmark analysis routines, offering a novel strategy to enable broader and more rational predictions related to the behavior of antioxidant mixtures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
依依发布了新的文献求助10
1秒前
xaopng完成签到,获得积分10
2秒前
anesthesist发布了新的文献求助10
2秒前
于洋完成签到 ,获得积分10
4秒前
一二完成签到 ,获得积分10
5秒前
龙猫爱看书完成签到,获得积分10
7秒前
白白完成签到 ,获得积分10
10秒前
东风发布了新的文献求助10
11秒前
zqqq完成签到 ,获得积分10
11秒前
11秒前
13秒前
祝笑柳完成签到,获得积分10
13秒前
KDS发布了新的文献求助10
14秒前
carpybala完成签到,获得积分10
14秒前
check003完成签到,获得积分10
15秒前
hihihi发布了新的文献求助10
16秒前
小巧谷波应助zouxuan采纳,获得10
16秒前
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
FIN应助科研通管家采纳,获得10
17秒前
18秒前
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
蓝枫发布了新的文献求助10
20秒前
楠楠小猪完成签到,获得积分10
23秒前
小绵羊发布了新的文献求助10
25秒前
凶狠的寄风完成签到 ,获得积分10
28秒前
29秒前
www完成签到,获得积分10
30秒前
依依发布了新的文献求助10
31秒前
洪星完成签到,获得积分10
33秒前
www发布了新的文献求助10
33秒前
共享精神应助zouxuan采纳,获得10
35秒前
舒心谷雪完成签到 ,获得积分10
35秒前
Rn完成签到 ,获得积分10
36秒前
luo完成签到 ,获得积分10
39秒前
东风发布了新的文献求助10
39秒前
hihihi完成签到,获得积分10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956943
求助须知:如何正确求助?哪些是违规求助? 3503011
关于积分的说明 11110935
捐赠科研通 3234007
什么是DOI,文献DOI怎么找? 1787694
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802234