Predicting Antioxidant Synergism via Artificial Intelligence and Benchtop Data

抗氧化剂 机器学习 生化工程 TBARS公司 人工智能 脂质氧化 计算机科学 化学 抗氧化能力 生物系统 生物化学 生物 脂质过氧化 工程类
作者
Lucas B. Ayres,Tomás E. Benavidez,Armelle Varillas,Jeb R. Linton,Daniel C. Whitehead,Carlos D. García
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:71 (42): 15644-15655 被引量:1
标识
DOI:10.1021/acs.jafc.3c05462
摘要

Lipid oxidation is a major issue affecting products containing unsaturated fatty acids as ingredients or components, leading to the formation of low molecular weight species with diverse functional groups that impart off-odors and off-flavors. Aiming to control this process, antioxidants are commonly added to these products, often deployed as combinations of two or more compounds, a strategy that allows for lowering the amount used while boosting the total antioxidant capacity of the formulation. While this approach allows for minimizing the potential organoleptic and toxic effects of these compounds, predicting how these mixtures of antioxidants will behave has traditionally been one of the most challenging tasks, often leading to simple additive, antagonistic, or synergistic effects. Approaches to understanding these interactions have been predominantly empirically driven but thus far, inefficient and unable to account for the complexity and multifaceted nature of antioxidant responses. To address this current gap in knowledge, we describe the use of an artificial intelligence model based on deep learning architecture to predict the type of interaction (synergistic, additive, and antagonistic) of antioxidant combinations. Here, each mixture was associated with a combination index value (CI) and used as input for our model, which was challenged against a test (n = 140) data set. Despite the encouraging preliminary results, this algorithm failed to provide accurate predictions of oxidation experiments performed in-house using binary mixtures of phenolic antioxidants and a lard sample. To overcome this problem, the AI algorithm was then enhanced with various amounts of experimental data (antioxidant power data assessed by the TBARS assay), demonstrating the importance of having chemically relevant experimental data to enhance the model's performance and provide suitable predictions with statistical relevance. We believe the proposed method could be used as an auxiliary tool in benchmark analysis routines, offering a novel strategy to enable broader and more rational predictions related to the behavior of antioxidant mixtures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
666发布了新的文献求助10
1秒前
宁为树完成签到,获得积分10
1秒前
丰富诗柳发布了新的文献求助10
1秒前
甜美的夏之完成签到,获得积分10
2秒前
好困应助想飞的猪采纳,获得10
2秒前
jyu完成签到,获得积分10
3秒前
3秒前
微醺钓青鱼完成签到 ,获得积分10
5秒前
东山发布了新的文献求助10
5秒前
丹阳阳完成签到,获得积分10
5秒前
负数完成签到,获得积分10
6秒前
剑逍遥完成签到 ,获得积分10
6秒前
未晞完成签到,获得积分10
6秒前
6秒前
6秒前
2010完成签到,获得积分10
7秒前
李真完成签到 ,获得积分10
7秒前
西西里柠檬完成签到,获得积分10
7秒前
顾文杰完成签到 ,获得积分10
7秒前
幸福大白完成签到,获得积分10
8秒前
贵金属完成签到,获得积分10
8秒前
郑堰爻完成签到 ,获得积分10
8秒前
夏xia完成签到,获得积分10
8秒前
fthpzhu完成签到 ,获得积分10
9秒前
QQLL完成签到,获得积分10
9秒前
炙热的远侵完成签到,获得积分20
9秒前
grs完成签到,获得积分10
10秒前
奶油布丁发布了新的文献求助10
12秒前
da发布了新的文献求助10
12秒前
丰富诗柳完成签到,获得积分10
13秒前
梓泽丘墟应助科研通管家采纳,获得20
14秒前
雨相所至应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
雨相所至应助科研通管家采纳,获得10
14秒前
15秒前
NexusExplorer应助务实的若魔采纳,获得10
16秒前
闷声发完成签到,获得积分10
16秒前
李爱国应助清脆的乌冬面采纳,获得10
16秒前
可可可11完成签到 ,获得积分10
16秒前
诚心闭月完成签到,获得积分10
17秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167282
求助须知:如何正确求助?哪些是违规求助? 2818798
关于积分的说明 7922523
捐赠科研通 2478563
什么是DOI,文献DOI怎么找? 1320404
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443