Prediction of symptomatic anastomotic leak after rectal cancer surgery: A machine learning approach

Lasso(编程语言) 医学 逐步回归 逻辑回归 队列 接收机工作特性 吻合 结直肠癌 外科 预测建模 倾向得分匹配 队列研究 并发症 机器学习 内科学 癌症 计算机科学 万维网
作者
Yu Shen,Li‐Bin Huang,Anqing Lu,Tinghan Yang,Hai‐Ning Chen,Ziqiang Wang
出处
期刊:Journal of Surgical Oncology [Wiley]
卷期号:129 (2): 264-272 被引量:5
标识
DOI:10.1002/jso.27470
摘要

Abstract Introduction Anastomotic leakage (AL) remains the most dreaded and unpredictable major complication after low anterior resection for mid‐low rectal cancer. The aim of this study is to identify patients with high risk for AL based on the machine learning method. Methods Patients with mid‐low rectal cancer undergoing low anterior resection were enrolled from West China Hospital between January 2008 and October 2019 and were split by time into training cohort and validation cohort. The least absolute shrinkage and selection operator (LASSO) method and stepwise method were applied for variable selection and predictive model building in the training cohort. The area under the receiver operating characteristic curve (AUC) and calibration curves were used to evaluate the performance of the models. Results The rate of AL was 5.8% (38/652) and 7.2% (15/208) in the training cohort and validation cohort, respectively. The LASSO‐logistic model selected almost the same variables (hypertension, operating time, cT4, tumor location, intraoperative blood loss) compared to the stepwise logistic model except for tumor size (the LASSO‐logistic model) and American Society of Anesthesiologists score (the stepwise logistic model). The predictive performance of the LASSO‐logistics model was better than the stepwise‐logistics model (AUC: 0.790 vs. 0.759). Calibration curves showed mean absolute error of 0.006 and 0.013 for the LASSO‐logistics model and stepwise‐logistics model, respectively. Conclusion Our study developed a feasible predictive model with a machine‐learning algorithm to classify patients with a high risk of AL, which would assist surgical decision‐making and reduce unnecessary stoma diversion. The involved machine learning algorithms provide clinicians with an innovative alternative to enhance clinical management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lily发布了新的文献求助10
刚刚
莫言发布了新的文献求助10
1秒前
Gaojinyun完成签到,获得积分10
1秒前
1秒前
爱喝蜜桃乌龙完成签到,获得积分10
2秒前
leyouyou完成签到,获得积分10
2秒前
thynkz完成签到,获得积分10
4秒前
GingerF应助Lzt采纳,获得50
4秒前
4秒前
领导范儿应助LZ采纳,获得10
5秒前
肥鱼不会飞完成签到,获得积分10
6秒前
大个应助syl采纳,获得10
6秒前
limo完成签到 ,获得积分10
6秒前
鲨鱼鳍完成签到,获得积分20
6秒前
6秒前
wyao完成签到 ,获得积分10
7秒前
在水一方应助闪闪采纳,获得10
7秒前
莫言完成签到,获得积分10
7秒前
Akim应助lsw采纳,获得10
7秒前
JenifferF完成签到,获得积分10
7秒前
fei完成签到,获得积分10
8秒前
戚小完成签到,获得积分10
8秒前
7Bao完成签到,获得积分20
8秒前
以韓完成签到 ,获得积分10
8秒前
止戈为武完成签到,获得积分10
8秒前
Sky完成签到,获得积分10
8秒前
8秒前
9秒前
顺顺黎黎发布了新的文献求助10
10秒前
阳光念桃完成签到,获得积分10
10秒前
斯文雪青完成签到,获得积分10
10秒前
10秒前
科研通AI6应助扣1送地狱火采纳,获得30
10秒前
hqhbj77完成签到,获得积分10
10秒前
若山完成签到,获得积分10
11秒前
11秒前
12秒前
Ava应助账户已注销采纳,获得10
12秒前
经纬完成签到,获得积分10
12秒前
huangxiaoling完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257090
求助须知:如何正确求助?哪些是违规求助? 4419217
关于积分的说明 13755371
捐赠科研通 4292424
什么是DOI,文献DOI怎么找? 2355507
邀请新用户注册赠送积分活动 1351924
关于科研通互助平台的介绍 1312697