Prediction of symptomatic anastomotic leak after rectal cancer surgery: A machine learning approach

Lasso(编程语言) 医学 逐步回归 逻辑回归 队列 接收机工作特性 吻合 结直肠癌 外科 预测建模 倾向得分匹配 队列研究 并发症 机器学习 内科学 癌症 计算机科学 万维网
作者
Yu Shen,Li‐Bin Huang,Anqing Lu,Tinghan Yang,Hai‐Ning Chen,Ziqiang Wang
出处
期刊:Journal of Surgical Oncology [Wiley]
卷期号:129 (2): 264-272 被引量:5
标识
DOI:10.1002/jso.27470
摘要

Abstract Introduction Anastomotic leakage (AL) remains the most dreaded and unpredictable major complication after low anterior resection for mid‐low rectal cancer. The aim of this study is to identify patients with high risk for AL based on the machine learning method. Methods Patients with mid‐low rectal cancer undergoing low anterior resection were enrolled from West China Hospital between January 2008 and October 2019 and were split by time into training cohort and validation cohort. The least absolute shrinkage and selection operator (LASSO) method and stepwise method were applied for variable selection and predictive model building in the training cohort. The area under the receiver operating characteristic curve (AUC) and calibration curves were used to evaluate the performance of the models. Results The rate of AL was 5.8% (38/652) and 7.2% (15/208) in the training cohort and validation cohort, respectively. The LASSO‐logistic model selected almost the same variables (hypertension, operating time, cT4, tumor location, intraoperative blood loss) compared to the stepwise logistic model except for tumor size (the LASSO‐logistic model) and American Society of Anesthesiologists score (the stepwise logistic model). The predictive performance of the LASSO‐logistics model was better than the stepwise‐logistics model (AUC: 0.790 vs. 0.759). Calibration curves showed mean absolute error of 0.006 and 0.013 for the LASSO‐logistics model and stepwise‐logistics model, respectively. Conclusion Our study developed a feasible predictive model with a machine‐learning algorithm to classify patients with a high risk of AL, which would assist surgical decision‐making and reduce unnecessary stoma diversion. The involved machine learning algorithms provide clinicians with an innovative alternative to enhance clinical management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
gnr2000发布了新的文献求助10
1秒前
evens发布了新的文献求助10
1秒前
米九完成签到,获得积分10
2秒前
紧张的铅笔完成签到,获得积分10
2秒前
老刘完成签到,获得积分10
2秒前
岚婘完成签到,获得积分10
2秒前
frap完成签到,获得积分0
4秒前
Rui完成签到 ,获得积分10
5秒前
852应助球球了采纳,获得10
6秒前
优雅小霜发布了新的文献求助10
6秒前
星沉静默完成签到 ,获得积分10
6秒前
搜集达人应助yxy采纳,获得10
7秒前
流川枫发布了新的文献求助10
8秒前
russing完成签到 ,获得积分10
8秒前
张础锐完成签到,获得积分10
9秒前
沉静海安完成签到,获得积分10
9秒前
苗条的小蜜蜂完成签到 ,获得积分10
10秒前
万能图书馆应助westbobo采纳,获得10
10秒前
li完成签到,获得积分20
11秒前
lin完成签到,获得积分10
12秒前
Lucas应助XJ采纳,获得10
12秒前
今天不学习明天变垃圾完成签到,获得积分10
12秒前
心灵美的修洁完成签到 ,获得积分10
12秒前
爱听歌的从筠完成签到,获得积分10
13秒前
15秒前
1997_Aris发布了新的文献求助10
15秒前
cc完成签到,获得积分10
16秒前
li发布了新的文献求助10
16秒前
打打应助月倚樱落时采纳,获得10
17秒前
踏雪寻梅完成签到,获得积分10
17秒前
王不王发布了新的文献求助10
17秒前
370完成签到,获得积分10
17秒前
研友_VZG7GZ应助decademe采纳,获得10
18秒前
liuxinying完成签到,获得积分10
18秒前
18秒前
19秒前
20秒前
111完成签到,获得积分10
20秒前
卫海亦完成签到,获得积分10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582