亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of symptomatic anastomotic leak after rectal cancer surgery: A machine learning approach

Lasso(编程语言) 医学 逐步回归 逻辑回归 队列 接收机工作特性 吻合 结直肠癌 外科 预测建模 倾向得分匹配 队列研究 并发症 机器学习 内科学 癌症 计算机科学 万维网
作者
Yu Shen,Li‐Bin Huang,Anqing Lu,Tinghan Yang,Hai‐Ning Chen,Ziqiang Wang
出处
期刊:Journal of Surgical Oncology [Wiley]
卷期号:129 (2): 264-272 被引量:17
标识
DOI:10.1002/jso.27470
摘要

Abstract Introduction Anastomotic leakage (AL) remains the most dreaded and unpredictable major complication after low anterior resection for mid‐low rectal cancer. The aim of this study is to identify patients with high risk for AL based on the machine learning method. Methods Patients with mid‐low rectal cancer undergoing low anterior resection were enrolled from West China Hospital between January 2008 and October 2019 and were split by time into training cohort and validation cohort. The least absolute shrinkage and selection operator (LASSO) method and stepwise method were applied for variable selection and predictive model building in the training cohort. The area under the receiver operating characteristic curve (AUC) and calibration curves were used to evaluate the performance of the models. Results The rate of AL was 5.8% (38/652) and 7.2% (15/208) in the training cohort and validation cohort, respectively. The LASSO‐logistic model selected almost the same variables (hypertension, operating time, cT4, tumor location, intraoperative blood loss) compared to the stepwise logistic model except for tumor size (the LASSO‐logistic model) and American Society of Anesthesiologists score (the stepwise logistic model). The predictive performance of the LASSO‐logistics model was better than the stepwise‐logistics model (AUC: 0.790 vs. 0.759). Calibration curves showed mean absolute error of 0.006 and 0.013 for the LASSO‐logistics model and stepwise‐logistics model, respectively. Conclusion Our study developed a feasible predictive model with a machine‐learning algorithm to classify patients with a high risk of AL, which would assist surgical decision‐making and reduce unnecessary stoma diversion. The involved machine learning algorithms provide clinicians with an innovative alternative to enhance clinical management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wggggggy完成签到,获得积分20
8秒前
14秒前
19秒前
无限发布了新的文献求助10
20秒前
wggggggy发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
25秒前
YQP发布了新的文献求助10
26秒前
欣欣完成签到,获得积分10
45秒前
科研通AI2S应助欣欣采纳,获得10
51秒前
1分钟前
1分钟前
zzzy发布了新的文献求助10
1分钟前
kcl发布了新的文献求助10
1分钟前
绝世冰淇淋完成签到 ,获得积分10
1分钟前
无极微光应助简单采纳,获得20
1分钟前
恒星的恒心完成签到 ,获得积分10
1分钟前
火星仙人掌完成签到 ,获得积分10
1分钟前
blenx完成签到,获得积分10
1分钟前
1分钟前
ZanE完成签到,获得积分10
1分钟前
1分钟前
1分钟前
十七完成签到,获得积分10
2分钟前
zzzy完成签到,获得积分20
2分钟前
健忘道罡发布了新的文献求助10
2分钟前
zzzy发布了新的文献求助10
2分钟前
2分钟前
2分钟前
NexusExplorer应助十七采纳,获得10
2分钟前
欣欣发布了新的文献求助10
2分钟前
烟花应助ZZTT采纳,获得10
2分钟前
2分钟前
Jenny完成签到,获得积分20
2分钟前
2分钟前
ZZTT完成签到,获得积分20
2分钟前
桐桐应助abbo采纳,获得10
2分钟前
ZZTT发布了新的文献求助10
2分钟前
ding应助ZZTT采纳,获得30
2分钟前
王明慧完成签到 ,获得积分10
2分钟前
小二郎应助moyu123采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723706
求助须知:如何正确求助?哪些是违规求助? 5280292
关于积分的说明 15299069
捐赠科研通 4872062
什么是DOI,文献DOI怎么找? 2616490
邀请新用户注册赠送积分活动 1566316
关于科研通互助平台的介绍 1523192