已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of symptomatic anastomotic leak after rectal cancer surgery: A machine learning approach

Lasso(编程语言) 医学 逐步回归 逻辑回归 队列 接收机工作特性 吻合 结直肠癌 外科 预测建模 倾向得分匹配 队列研究 并发症 机器学习 内科学 癌症 计算机科学 万维网
作者
Yu Shen,Li‐Bin Huang,Anqing Lu,Tinghan Yang,Hai‐Ning Chen,Ziqiang Wang
出处
期刊:Journal of Surgical Oncology [Wiley]
卷期号:129 (2): 264-272 被引量:5
标识
DOI:10.1002/jso.27470
摘要

Abstract Introduction Anastomotic leakage (AL) remains the most dreaded and unpredictable major complication after low anterior resection for mid‐low rectal cancer. The aim of this study is to identify patients with high risk for AL based on the machine learning method. Methods Patients with mid‐low rectal cancer undergoing low anterior resection were enrolled from West China Hospital between January 2008 and October 2019 and were split by time into training cohort and validation cohort. The least absolute shrinkage and selection operator (LASSO) method and stepwise method were applied for variable selection and predictive model building in the training cohort. The area under the receiver operating characteristic curve (AUC) and calibration curves were used to evaluate the performance of the models. Results The rate of AL was 5.8% (38/652) and 7.2% (15/208) in the training cohort and validation cohort, respectively. The LASSO‐logistic model selected almost the same variables (hypertension, operating time, cT4, tumor location, intraoperative blood loss) compared to the stepwise logistic model except for tumor size (the LASSO‐logistic model) and American Society of Anesthesiologists score (the stepwise logistic model). The predictive performance of the LASSO‐logistics model was better than the stepwise‐logistics model (AUC: 0.790 vs. 0.759). Calibration curves showed mean absolute error of 0.006 and 0.013 for the LASSO‐logistics model and stepwise‐logistics model, respectively. Conclusion Our study developed a feasible predictive model with a machine‐learning algorithm to classify patients with a high risk of AL, which would assist surgical decision‐making and reduce unnecessary stoma diversion. The involved machine learning algorithms provide clinicians with an innovative alternative to enhance clinical management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wdw2501完成签到,获得积分10
刚刚
鳗鱼又槐完成签到,获得积分20
1秒前
left_right发布了新的文献求助10
1秒前
赘婿应助荣一采纳,获得10
2秒前
peashooter发布了新的文献求助10
3秒前
soda完成签到,获得积分10
5秒前
7秒前
left_right完成签到,获得积分10
7秒前
7秒前
RJ完成签到,获得积分10
8秒前
8秒前
8秒前
10秒前
荟菁发布了新的文献求助10
11秒前
算命的完成签到,获得积分10
12秒前
牛马学生发布了新的文献求助10
12秒前
望空发布了新的文献求助10
12秒前
yu发布了新的文献求助10
14秒前
丘比特应助Sg采纳,获得10
15秒前
19秒前
Owen应助刻苦迎波采纳,获得10
19秒前
在水一方应助四夕水窖采纳,获得10
19秒前
Fancy完成签到 ,获得积分10
23秒前
24秒前
25秒前
25秒前
缓慢凤凰发布了新的文献求助10
26秒前
春日防卫队Fire完成签到,获得积分10
27秒前
29秒前
虾乐完成签到,获得积分10
29秒前
29秒前
缓慢幻天完成签到,获得积分10
30秒前
浮浮世世应助科研通管家采纳,获得30
31秒前
CipherSage应助科研通管家采纳,获得30
31秒前
共享精神应助科研通管家采纳,获得10
31秒前
科研通AI6应助科研通管家采纳,获得30
31秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
英姑应助科研通管家采纳,获得10
31秒前
研友_VZG7GZ应助科研通管家采纳,获得10
31秒前
luis应助科研通管家采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634038
求助须知:如何正确求助?哪些是违规求助? 4730159
关于积分的说明 14987606
捐赠科研通 4791840
什么是DOI,文献DOI怎么找? 2559081
邀请新用户注册赠送积分活动 1519555
关于科研通互助平台的介绍 1479740