Prediction of symptomatic anastomotic leak after rectal cancer surgery: A machine learning approach

Lasso(编程语言) 医学 逐步回归 逻辑回归 队列 接收机工作特性 吻合 结直肠癌 外科 预测建模 倾向得分匹配 队列研究 并发症 机器学习 内科学 癌症 计算机科学 万维网
作者
Yu Shen,Li‐Bin Huang,Anqing Lu,Tinghan Yang,Hai‐Ning Chen,Ziqiang Wang
出处
期刊:Journal of Surgical Oncology [Wiley]
卷期号:129 (2): 264-272 被引量:4
标识
DOI:10.1002/jso.27470
摘要

Abstract Introduction Anastomotic leakage (AL) remains the most dreaded and unpredictable major complication after low anterior resection for mid‐low rectal cancer. The aim of this study is to identify patients with high risk for AL based on the machine learning method. Methods Patients with mid‐low rectal cancer undergoing low anterior resection were enrolled from West China Hospital between January 2008 and October 2019 and were split by time into training cohort and validation cohort. The least absolute shrinkage and selection operator (LASSO) method and stepwise method were applied for variable selection and predictive model building in the training cohort. The area under the receiver operating characteristic curve (AUC) and calibration curves were used to evaluate the performance of the models. Results The rate of AL was 5.8% (38/652) and 7.2% (15/208) in the training cohort and validation cohort, respectively. The LASSO‐logistic model selected almost the same variables (hypertension, operating time, cT4, tumor location, intraoperative blood loss) compared to the stepwise logistic model except for tumor size (the LASSO‐logistic model) and American Society of Anesthesiologists score (the stepwise logistic model). The predictive performance of the LASSO‐logistics model was better than the stepwise‐logistics model (AUC: 0.790 vs. 0.759). Calibration curves showed mean absolute error of 0.006 and 0.013 for the LASSO‐logistics model and stepwise‐logistics model, respectively. Conclusion Our study developed a feasible predictive model with a machine‐learning algorithm to classify patients with a high risk of AL, which would assist surgical decision‐making and reduce unnecessary stoma diversion. The involved machine learning algorithms provide clinicians with an innovative alternative to enhance clinical management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小曲完成签到 ,获得积分10
刚刚
yzx发布了新的文献求助10
1秒前
1秒前
gaochi完成签到,获得积分10
1秒前
沉静蘑菇发布了新的文献求助10
2秒前
科研通AI2S应助Joy采纳,获得10
5秒前
城门楼子发布了新的文献求助10
5秒前
6秒前
JianYugen完成签到,获得积分10
6秒前
JamesPei应助LMDD采纳,获得10
7秒前
7秒前
33完成签到 ,获得积分10
7秒前
Positive完成签到,获得积分10
7秒前
9秒前
10秒前
优秀若蕊完成签到 ,获得积分10
10秒前
10秒前
小柏学长完成签到,获得积分10
10秒前
10秒前
md完成签到 ,获得积分10
10秒前
11秒前
yuan完成签到 ,获得积分20
12秒前
13秒前
13秒前
乐乐应助Bonnie采纳,获得10
13秒前
Positive发布了新的文献求助10
13秒前
城门楼子完成签到,获得积分10
13秒前
14秒前
小柏学长发布了新的文献求助10
14秒前
15秒前
正直凌文发布了新的文献求助20
15秒前
TUTU发布了新的文献求助10
16秒前
费小曼发布了新的文献求助20
17秒前
1112233完成签到,获得积分10
17秒前
Legend发布了新的文献求助30
17秒前
17秒前
18秒前
18秒前
蛋挞蛋挞发布了新的文献求助10
20秒前
20秒前
高分求助中
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3127454
求助须知:如何正确求助?哪些是违规求助? 2778263
关于积分的说明 7738628
捐赠科研通 2433618
什么是DOI,文献DOI怎么找? 1292974
科研通“疑难数据库(出版商)”最低求助积分说明 623091
版权声明 600489