纳滤
膜
界面聚合
材料科学
纳米片
纳米复合材料
化学工程
结垢
水溶液
环糊精
纳米材料
纳米技术
色谱法
化学
有机化学
聚合物
复合材料
单体
工程类
生物化学
作者
Dandan Cheng,Youcai Chen,Zhaoqian Zhang,Xinmeng Wang,Mengfan Wang,Qiyu Duan,Genghao Gong,Yunxia Hu,Shao‐Lu Li
标识
DOI:10.1016/j.memsci.2023.121969
摘要
Nanotechnology has created numerous opportunities for the development of novel thin film nanocomposite (TFN) membranes. In this study, we prepared a novel β-cyclodextrin based nanosheets (β-CDNSs) with a lateral size of approximately 200–400 nm and thickness of ∼10 nm through the interfacial polymerization method and used it as the nanofillers in aqueous phase to prepare advanced nanofiltration (NF) membranes. The high microporosity, organic attribute, hydrophilic COOH and reactive OH groups present in β-CDNSs are conducive to the microstructural parameters fine-tuning of the resultant TFN membranes. The optimal membrane TFN-0.02 presented the PA selective layer with thinner thickness, less crosslinking degrees, prominent globule microstructures, and increased hydrophilic properties. As a result, it achieved a remarkable enhancement in pure water permeability (21.46 L m− 2 h− 1 bar− 1, versus 8.79 L m− 2 h− 1 bar− 1, nearly 2.4-fold increase), high rejection of divalent salt (above 98% for Na2SO4) and an outstanding selectivity of αNaCl/Na2SO4 = 50.27. Moreover, the tailored membrane TFN-0.02 exhibited superior resistance towards four typical organic foulants BSA, LYZ, DTAB and SDS. Overall, this work provides insightful guidance for the design of novel organic nanomaterials with desired properties for greatly enhanced separation performances of as-fabricated membranes.
科研通智能强力驱动
Strongly Powered by AbleSci AI