Selection of the optimal dose of sertraline for depression: A dose-response meta-analysis of randomized controlled trials

舍曲林 不利影响 安慰剂 萧条(经济学) 随机对照试验 内科学 医学 荟萃分析 置信区间 心理学 麻醉 抗抑郁药 替代医学 宏观经济学 病理 海马体 经济
作者
Xufei Luo,Di Zhu,Jitao Li,Mengjuan Ren,Yunlan Liu,Tianmei Si,Yaolong Chen
出处
期刊:Psychiatry Research-neuroimaging [Elsevier]
卷期号:327: 115391-115391 被引量:15
标识
DOI:10.1016/j.psychres.2023.115391
摘要

Sertraline has been shown to be effective in the treatment of depression. However, the relationship between the dosage of sertraline and its efficacy and safety are unclear. We identified RCTs that compared sertraline with placebo for the treatment of depression, conducted conventional meta-analyses on the efficacy and safety of sertraline, and assessed the nonlinear dose-response relationship between sertraline dosage and the changes in HAM-D and CGI-S scores, dropout from care for any reason or due to adverse effects, and the rate of adverse effects, using a 1-stage restricted cubic spline regression model. Thirty-one RCTs involving 4,235 patients were included. The pooled mean differences (MD) in the change in HAM-D total score [MD=-2.34, 95% confidence interval (CI) -2.93, -1.76], CGI-S score and MADRS score, but also the dropout rate for adverse effects, and rate of adverse effects were higher in sertraline group. The therapeutic response of sertraline for treating depression increased with the dosage. Meanwhile, the risk of total adverse reactions slightly decreased between 50 and 150mg, and increased at doses above 150mg. The dose-dependence of both efficacy and safety need to be considered when choosing the optimal dosage of sertraline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助GGMJ采纳,获得10
刚刚
旺仔不甜完成签到,获得积分10
1秒前
丘比特应助June采纳,获得10
3秒前
liusha发布了新的文献求助10
4秒前
Hello应助mira采纳,获得10
6秒前
7秒前
科研通AI6应助小易采纳,获得10
8秒前
lxt完成签到,获得积分10
10秒前
12秒前
12秒前
怜然关注了科研通微信公众号
14秒前
情怀应助李杰采纳,获得10
16秒前
所所应助天天开心采纳,获得10
16秒前
初一发布了新的文献求助10
16秒前
赘婿应助万松辉采纳,获得10
16秒前
17秒前
ysws完成签到,获得积分10
18秒前
Orange应助乐观的颦采纳,获得10
18秒前
完美世界应助June采纳,获得10
20秒前
21秒前
21秒前
闪闪完成签到,获得积分10
23秒前
23秒前
小马甲应助科研通管家采纳,获得10
23秒前
23秒前
所所应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得20
24秒前
24秒前
传奇3应助科研通管家采纳,获得10
24秒前
无花果应助科研通管家采纳,获得10
24秒前
科目三应助科研通管家采纳,获得10
24秒前
小二郎应助科研通管家采纳,获得10
24秒前
24秒前
爆米花应助科研通管家采纳,获得10
24秒前
斯文败类应助科研通管家采纳,获得10
24秒前
慎默应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073