ActionCLIP: Adapting Language-Image Pretrained Models for Video Action Recognition

计算机科学 人工智能 任务(项目管理) 动作(物理) 集合(抽象数据类型) 适应(眼睛) 动作识别 代表(政治) 自然语言处理 机器学习 模式识别(心理学) 班级(哲学) 物理 光学 经济 管理 程序设计语言 法学 政治 量子力学 政治学
作者
Mengmeng Wang,Jiazheng Xing,Jianbiao Mei,Yong Liu,Yunliang Jiang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:8
标识
DOI:10.1109/tnnls.2023.3331841
摘要

The canonical approach to video action recognition dictates a neural network model to do a classic and standard 1-of-N majority vote task. They are trained to predict a fixed set of predefined categories, limiting their transferability on new datasets with unseen concepts. In this article, we provide a new perspective on action recognition by attaching importance to the semantic information of label texts rather than simply mapping them into numbers. Specifically, we model this task as a video-text matching problem within a multimodal learning framework, which strengthens the video representation with more semantic language supervision and enables our model to do zero-shot action recognition without any further labeled data or parameters' requirements. Moreover, to handle the deficiency of label texts and make use of tremendous web data, we propose a new paradigm based on this multimodal learning framework for action recognition, which we dub "pre-train, adapt and fine-tune." This paradigm first learns powerful representations from pre-training on a large amount of web image-text or video-text data. Then, it makes the action recognition task to act more like pre-training problems via adaptation engineering. Finally, it is fine-tuned end-to-end on target datasets to obtain strong performance. We give an instantiation of the new paradigm, ActionCLIP, which not only has superior and flexible zero-shot/few-shot transfer ability but also reaches a top performance on general action recognition task, achieving 83.8% top-1 accuracy on Kinetics-400 with a ViT-B/16 as the backbone. Code is available at https://github.com/sallymmx/ActionCLIP.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
May完成签到,获得积分10
1秒前
营养小杨应助混子采纳,获得10
1秒前
2秒前
糯米饭完成签到 ,获得积分20
3秒前
Bmo发布了新的文献求助30
3秒前
4秒前
4秒前
4秒前
明理的若灵完成签到 ,获得积分10
4秒前
5秒前
迷路含莲完成签到,获得积分10
5秒前
5秒前
ring发布了新的文献求助10
6秒前
6秒前
夏天来了发布了新的文献求助30
6秒前
壮观的雅绿完成签到,获得积分10
7秒前
行走的车发布了新的文献求助10
7秒前
9秒前
9秒前
9秒前
9秒前
10秒前
爱静静应助攒一口袋星星采纳,获得10
10秒前
10秒前
11秒前
pluto应助灰色白面鸮采纳,获得10
11秒前
11秒前
打打应助灰色白面鸮采纳,获得10
11秒前
科研通AI5应助灰色白面鸮采纳,获得10
11秒前
科研通AI5应助灰色白面鸮采纳,获得10
11秒前
苏晚发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
14秒前
14秒前
赘婿应助行走的车采纳,获得10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554588
求助须知:如何正确求助?哪些是违规求助? 3130412
关于积分的说明 9387005
捐赠科研通 2829789
什么是DOI,文献DOI怎么找? 1555716
邀请新用户注册赠送积分活动 726277
科研通“疑难数据库(出版商)”最低求助积分说明 715527