Economy and carbon emissions optimization of different provinces or regions in China using an improved temporal attention mechanism based on gate recurrent unit

人均 温室气体 国内生产总值 单位(环理论) 经济 自然资源经济学 经济 环境经济学 经济增长 人口 数学 生态学 人口学 数学教育 社会学 生物
作者
Cao Lian,Yongming Han,Mingfei Feng,Zhiqiang Geng,Yi Lü,Liangchao Chen,Weiying Ping,Tao Xia,Shaobo Li
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:434: 139827-139827 被引量:7
标识
DOI:10.1016/j.jclepro.2023.139827
摘要

With the implementation of 14th Five-Year Plan in China and the completion of the poverty alleviation task, the economy in China has made great progress. However, the carbon dioxide (CO2) emission has also increased, which will lead to the greenhouse effect for threatening economic development and affecting people's lives. Global warming has become the greatest challenge to contemporary economic and social development, and the transition to low-carbon economy has become a general trend of world economic development. Meanwhile, the traditional neural network method for predicting the economy and CO2 emissions is not accurate and objective because of the unbalanced labeling of training data and the inability to capture the relationship between time series data. Therefore, an economy and CO2 emission prediction model based on temporal attention Gate Recurrent Unit (GRU) (TA-GRU) with loss function Balanced Mean Square Error (BMSE) (BTA-GRU) mechanism is proposed to analyze and optimize the energy structure of 27 provincial-level administrative regions in China. Due to the unbalanced data labels in the different energy structure of different regions, the improved loss function BMSE is used to solve the problem of unbalanced labels from the perspective of statistics. Then, with coal, gasoline, petroleum, coke, fuel oil, diesel, natural gas and crude oil as inputs, the per capita Gross Domestic Product (GDP) as the desired output and the CO2 as the undesired output, the GRU can better capture time step dependencies in time series, and the attention mechanism can assign different weights to each time step, so that the proposed method can better learn data features and improve the accuracy of the an economic and CO2 emission prediction model. Finally, the CO2 emission and economic prediction model of different provincial-level administrative regions in China is established based on this proposed method. The experimental results show that compared with other mainstream time series data prediction models, this proposed model has better stability and practicability, and its mean absolute error (MAE), mean absolute percentage error (MAPE) and root mean square error (RMSE) reach 3.43, 3.28% and 2449.57, respectively. Furthermore, according to the actual situation of efficient provincial administrative regions, the energy structure of inefficient provincial administrative regions can be adjusted and optimized. Such as the energy structure of Hebei Province can be adjusted according to the energy structure of Beijing, it is estimated that the CO2 emissions of Hebei will be reduced by 82,972.43 ×10000 tons (WT) and its per capita GDP will be increased by 115,856 Yuan. Moreover, Chinese provincial governments should vigorously promote the use of clean energy, accelerate the establishment of a sound green low-carbon circular development economic system, and help achieve the goal of carbon neutrality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zzuwxj完成签到,获得积分10
刚刚
溪水完成签到 ,获得积分10
1秒前
JamesPei应助汽泡采纳,获得10
1秒前
SYLH应助风中的丝袜采纳,获得10
1秒前
汉堡包应助吴世勋fans采纳,获得10
2秒前
见刊完成签到,获得积分20
2秒前
正直夜安完成签到 ,获得积分10
3秒前
wen完成签到,获得积分10
4秒前
春分夏至完成签到,获得积分10
4秒前
ty心明亮完成签到 ,获得积分10
4秒前
zhou完成签到,获得积分10
4秒前
shuogesama完成签到,获得积分10
5秒前
欢欢欢乐乐乐乐完成签到,获得积分10
5秒前
多情的亦玉关注了科研通微信公众号
5秒前
月色完成签到,获得积分10
6秒前
6秒前
王博士完成签到,获得积分10
6秒前
我是好好学习完成签到,获得积分10
7秒前
Jimmybythebay完成签到,获得积分10
7秒前
qwe123发布了新的文献求助10
7秒前
温暖宛筠完成签到,获得积分10
7秒前
stuffmatter完成签到,获得积分0
7秒前
小郭最帅完成签到,获得积分10
8秒前
洋洋爱吃枣完成签到 ,获得积分10
8秒前
小灰灰发布了新的文献求助10
9秒前
海荣完成签到,获得积分10
9秒前
10秒前
含蓄元冬完成签到 ,获得积分10
10秒前
kellen完成签到,获得积分10
11秒前
11秒前
科研通AI5应助风中的丝袜采纳,获得10
11秒前
我是老大应助风中的丝袜采纳,获得10
11秒前
上官若男应助风中的丝袜采纳,获得10
11秒前
顾矜应助风中的丝袜采纳,获得10
11秒前
Hello应助风中的丝袜采纳,获得10
11秒前
思源应助风中的丝袜采纳,获得10
11秒前
香蕉觅云应助风中的丝袜采纳,获得10
11秒前
传奇3应助风中的丝袜采纳,获得10
11秒前
活力的尔阳完成签到,获得积分10
11秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484650
求助须知:如何正确求助?哪些是违规求助? 3073633
关于积分的说明 9131727
捐赠科研通 2765288
什么是DOI,文献DOI怎么找? 1517831
邀请新用户注册赠送积分活动 702289
科研通“疑难数据库(出版商)”最低求助积分说明 701190