Who is Who on Ethereum? Account Labeling Using Heterophilic Graph Convolutional Network

计算机科学 图形 理论计算机科学
作者
Dan Lin,Jiajing Wu,Tao Huang,Kaixin Lin,Zibin Zheng
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (3): 1541-1553 被引量:4
标识
DOI:10.1109/tsmc.2023.3329520
摘要

To combat cybercrimes and maintain financial security for the blockchain ecosystem, "know your customer" (KYC) is an essential and also challenging process due to the pseudonymity nature of blockchain technology. To unlock the potential of KYC on blockchain-based platforms like Ethereum, account labeling is a powerful means which can de-anonymize addresses by mining public transaction records. Existing studies on account labeling are mainly conducted via machine learning (ML) methods fed with hand-crafted features or graph neural networks based on the modeled transaction network. However, ML approaches based on hand-crafted features ignore the global interaction information between accounts, making it easy for criminals to evade detection. Moreover, the performance of traditional GCN methods when applied to Ethereum transaction network encounters limitations due to label sparsity, network heterophily, and large network size of the transaction network. In this article, we first analyze Ethereum accounts involved in typical businesses, in terms of both account and topological features. Then based on the analytical results, we propose a novel GCN method named know-your-customer graph convolutional network (KYC-GCN) which contains two key designs: 1) multihop aggregators and importance-based sampling are designed to tackle the dilemma between accuracy and efficiency. 2) GCN architecture is improved to explicitly capture local and more global information. Experimental results on a realistic Ethereum dataset show that the proposed KYC-GCN (90.2% accuracy, 86.2% Marco-F1) achieves state-of-the-art classification performance, and results on six benchmarks demonstrate that it yields great performance under homophily and heterophily.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大模型应助元g采纳,获得10
刚刚
充电宝应助lei029采纳,获得10
1秒前
2秒前
4秒前
4秒前
ooseabiscuit发布了新的文献求助10
5秒前
6秒前
田田田田发布了新的文献求助30
7秒前
7秒前
7秒前
Guai发布了新的文献求助10
9秒前
酷波er应助ccq采纳,获得10
9秒前
9秒前
grace发布了新的文献求助10
10秒前
李健应助离子键采纳,获得10
10秒前
酷炫的香魔完成签到,获得积分10
10秒前
sc发布了新的文献求助10
10秒前
12秒前
远方发布了新的文献求助10
12秒前
14秒前
共享精神应助受伤的怀绿采纳,获得10
14秒前
ooseabiscuit完成签到,获得积分10
14秒前
15秒前
甜甜的寻真给甜甜的寻真的求助进行了留言
15秒前
16秒前
Perrylin718完成签到,获得积分10
17秒前
烟花应助英勇的人生采纳,获得10
17秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
韩凡完成签到,获得积分10
20秒前
CodeCraft应助飘逸的麦片采纳,获得10
21秒前
星星发布了新的文献求助10
21秒前
宋jh完成签到,获得积分10
21秒前
文文完成签到,获得积分10
21秒前
22秒前
令宏发布了新的文献求助10
22秒前
wanci应助lllllllll采纳,获得10
23秒前
24秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975339
求助须知:如何正确求助?哪些是违规求助? 3519670
关于积分的说明 11199199
捐赠科研通 3256002
什么是DOI,文献DOI怎么找? 1798043
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305