已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Who is Who on Ethereum? Account Labeling Using Heterophilic Graph Convolutional Network

计算机科学 图形 理论计算机科学
作者
Dan Lin,Jiajing Wu,Tao Huang,Kaixin Lin,Zibin Zheng
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (3): 1541-1553 被引量:4
标识
DOI:10.1109/tsmc.2023.3329520
摘要

To combat cybercrimes and maintain financial security for the blockchain ecosystem, "know your customer" (KYC) is an essential and also challenging process due to the pseudonymity nature of blockchain technology. To unlock the potential of KYC on blockchain-based platforms like Ethereum, account labeling is a powerful means which can de-anonymize addresses by mining public transaction records. Existing studies on account labeling are mainly conducted via machine learning (ML) methods fed with hand-crafted features or graph neural networks based on the modeled transaction network. However, ML approaches based on hand-crafted features ignore the global interaction information between accounts, making it easy for criminals to evade detection. Moreover, the performance of traditional GCN methods when applied to Ethereum transaction network encounters limitations due to label sparsity, network heterophily, and large network size of the transaction network. In this article, we first analyze Ethereum accounts involved in typical businesses, in terms of both account and topological features. Then based on the analytical results, we propose a novel GCN method named know-your-customer graph convolutional network (KYC-GCN) which contains two key designs: 1) multihop aggregators and importance-based sampling are designed to tackle the dilemma between accuracy and efficiency. 2) GCN architecture is improved to explicitly capture local and more global information. Experimental results on a realistic Ethereum dataset show that the proposed KYC-GCN (90.2% accuracy, 86.2% Marco-F1) achieves state-of-the-art classification performance, and results on six benchmarks demonstrate that it yields great performance under homophily and heterophily.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhao完成签到,获得积分10
1秒前
2秒前
FJ发布了新的文献求助10
2秒前
3秒前
3秒前
ffddsdc发布了新的文献求助10
4秒前
迅速猕猴桃完成签到,获得积分10
6秒前
momo完成签到,获得积分10
6秒前
看文献的高光谱完成签到,获得积分10
6秒前
罗静发布了新的文献求助10
7秒前
8秒前
搜集达人应助快乐寄风采纳,获得10
9秒前
超超~发布了新的文献求助10
9秒前
9秒前
顾矜应助lll采纳,获得10
11秒前
12秒前
13秒前
王大锤发布了新的文献求助10
13秒前
ffddsdc完成签到,获得积分10
14秒前
JichunXiao完成签到,获得积分20
15秒前
18秒前
学术废渣发布了新的文献求助10
19秒前
英姑应助jeffery采纳,获得10
19秒前
lijing333aaa完成签到,获得积分10
21秒前
21秒前
李爱国应助还单身的含烟采纳,获得10
23秒前
23秒前
hyhyhyhy发布了新的文献求助10
24秒前
典雅曼卉完成签到,获得积分20
25秒前
26秒前
26秒前
郝誉发布了新的文献求助10
26秒前
田様应助panpan采纳,获得10
28秒前
29秒前
今后应助lixioani219采纳,获得10
29秒前
明明发布了新的文献求助10
30秒前
31秒前
默listening完成签到,获得积分10
34秒前
七秒鱼完成签到 ,获得积分10
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595476
求助须知:如何正确求助?哪些是违规求助? 4680709
关于积分的说明 14817226
捐赠科研通 4649999
什么是DOI,文献DOI怎么找? 2535433
邀请新用户注册赠送积分活动 1503339
关于科研通互助平台的介绍 1469644