Integrating Gaze and Mouse Via Joint Cross-Attention Fusion Net for Students' Activity Recognition in E-learning

凝视 模式 多模式学习 计算机科学 感知 模态(人机交互) 模式(计算机接口) 活动识别 人机交互 人工智能 机器学习 心理学 社会科学 神经科学 社会学
作者
R.H. Zhu,Shi Liang,Yunpeng Song,Zhongmin Cai
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:7 (3): 1-35
标识
DOI:10.1145/3610876
摘要

E-learning has emerged as an indispensable educational mode in the post-epidemic era. However, this mode makes it difficult for students to stay engaged in learning without appropriate activity monitoring. Our work explores a promising solution that combines gaze and mouse data to recognize students' activities, thereby facilitating activity monitoring and analysis during e-learning. We initially surveyed 200 students from a local university, finding more acceptance for eye trackers and mouse loggers compared to video surveillance. We then designed eight students' routine digital activities to collect a multimodal dataset and analyze the patterns and correlations between gaze and mouse across various activities. Our proposed Joint Cross-Attention Fusion Net, a multimodal activity recognition framework, leverages the gaze-mouse relationship to yield improved classification performance by integrating cross-modal representations through a cross-attention mechanism and integrating the joint features that characterize gaze-mouse coordination. Evaluation results show that our method can achieve up to 94.87% F1-score in predicting 8-classes activities, with an improvement of at least 7.44% over using gaze or mouse data independently. This research illuminates new possibilities for monitoring student engagement in intelligent education systems, also suggesting a promising strategy for melding perception and action modalities in behavioral analysis across a range of ubiquitous computing environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助念清宸采纳,获得10
1秒前
1秒前
chenting完成签到 ,获得积分10
2秒前
2秒前
4秒前
JamesPei应助淡淡的可仁采纳,获得10
6秒前
lianliyou应助hrq采纳,获得10
6秒前
缓慢新梅发布了新的文献求助10
7秒前
赖向珊发布了新的文献求助10
8秒前
smile完成签到,获得积分10
12秒前
12秒前
LGJ发布了新的文献求助10
14秒前
14秒前
lianliyou应助lin采纳,获得10
16秒前
shirley完成签到,获得积分10
16秒前
17秒前
smile发布了新的文献求助10
17秒前
18秒前
小Z顺利毕业完成签到,获得积分10
18秒前
hby发布了新的文献求助10
18秒前
21秒前
烟花应助葭月十七采纳,获得10
22秒前
缓慢新梅完成签到,获得积分10
23秒前
24秒前
哔哔鱼完成签到,获得积分10
26秒前
26秒前
CC完成签到,获得积分10
26秒前
桐桐应助科研通管家采纳,获得10
26秒前
调研昵称发布了新的文献求助10
26秒前
华仔应助科研通管家采纳,获得10
26秒前
SciGPT应助科研通管家采纳,获得10
26秒前
Lionnn完成签到 ,获得积分10
26秒前
杳鸢应助科研通管家采纳,获得10
26秒前
彭于晏应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
27秒前
大个应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
CodeCraft应助科研通管家采纳,获得10
27秒前
子车茗应助科研通管家采纳,获得10
27秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3214473
求助须知:如何正确求助?哪些是违规求助? 2863033
关于积分的说明 8136838
捐赠科研通 2529295
什么是DOI,文献DOI怎么找? 1363520
科研通“疑难数据库(出版商)”最低求助积分说明 643825
邀请新用户注册赠送积分活动 616348