Integrating Gaze and Mouse Via Joint Cross-Attention Fusion Net for Students' Activity Recognition in E-learning

凝视 模式 多模式学习 计算机科学 感知 模态(人机交互) 模式(计算机接口) 活动识别 人机交互 人工智能 机器学习 心理学 社会科学 神经科学 社会学
作者
R.H. Zhu,Shi Liang,Yunpeng Song,Zhongmin Cai
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:7 (3): 1-35
标识
DOI:10.1145/3610876
摘要

E-learning has emerged as an indispensable educational mode in the post-epidemic era. However, this mode makes it difficult for students to stay engaged in learning without appropriate activity monitoring. Our work explores a promising solution that combines gaze and mouse data to recognize students' activities, thereby facilitating activity monitoring and analysis during e-learning. We initially surveyed 200 students from a local university, finding more acceptance for eye trackers and mouse loggers compared to video surveillance. We then designed eight students' routine digital activities to collect a multimodal dataset and analyze the patterns and correlations between gaze and mouse across various activities. Our proposed Joint Cross-Attention Fusion Net, a multimodal activity recognition framework, leverages the gaze-mouse relationship to yield improved classification performance by integrating cross-modal representations through a cross-attention mechanism and integrating the joint features that characterize gaze-mouse coordination. Evaluation results show that our method can achieve up to 94.87% F1-score in predicting 8-classes activities, with an improvement of at least 7.44% over using gaze or mouse data independently. This research illuminates new possibilities for monitoring student engagement in intelligent education systems, also suggesting a promising strategy for melding perception and action modalities in behavioral analysis across a range of ubiquitous computing environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bressanone发布了新的文献求助10
刚刚
是江江哥啊完成签到,获得积分10
刚刚
刚刚
1秒前
无花果应助ll采纳,获得10
2秒前
Ava应助Wujt采纳,获得10
2秒前
ATOM发布了新的文献求助30
2秒前
fagao完成签到,获得积分10
2秒前
菠萝吹雪完成签到,获得积分10
3秒前
迪迦王完成签到,获得积分10
4秒前
4秒前
可爱枕头发布了新的文献求助20
5秒前
7秒前
8秒前
懒顾发布了新的文献求助10
8秒前
科目三应助vv采纳,获得10
8秒前
Eric完成签到,获得积分10
9秒前
qing完成签到,获得积分10
11秒前
11秒前
彩虹猫之刃完成签到,获得积分10
11秒前
lzk完成签到,获得积分10
12秒前
12秒前
慕青应助糟糕的妙海采纳,获得30
12秒前
superluckc发布了新的文献求助10
14秒前
磊少完成签到,获得积分10
14秒前
14秒前
luogan完成签到,获得积分10
15秒前
16秒前
朴实雨竹完成签到,获得积分10
17秒前
18秒前
科研通AI6应助Jally采纳,获得30
19秒前
21秒前
NightGlow发布了新的文献求助10
22秒前
科研通AI6应助风格采纳,获得30
23秒前
啊啊啊啊啊啊完成签到 ,获得积分10
23秒前
DDDD发布了新的文献求助10
24秒前
彭于晏应助xh采纳,获得10
24秒前
sheng关注了科研通微信公众号
25秒前
NightGlow完成签到,获得积分10
25秒前
superluckc完成签到,获得积分20
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569550
求助须知:如何正确求助?哪些是违规求助? 4654088
关于积分的说明 14709800
捐赠科研通 4595862
什么是DOI,文献DOI怎么找? 2522045
邀请新用户注册赠送积分活动 1493370
关于科研通互助平台的介绍 1463987