Integrating Gaze and Mouse Via Joint Cross-Attention Fusion Net for Students' Activity Recognition in E-learning

凝视 模式 多模式学习 计算机科学 感知 模态(人机交互) 模式(计算机接口) 活动识别 人机交互 人工智能 机器学习 心理学 社会科学 神经科学 社会学
作者
R.H. Zhu,Shi Liang,Yunpeng Song,Zhongmin Cai
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:7 (3): 1-35
标识
DOI:10.1145/3610876
摘要

E-learning has emerged as an indispensable educational mode in the post-epidemic era. However, this mode makes it difficult for students to stay engaged in learning without appropriate activity monitoring. Our work explores a promising solution that combines gaze and mouse data to recognize students' activities, thereby facilitating activity monitoring and analysis during e-learning. We initially surveyed 200 students from a local university, finding more acceptance for eye trackers and mouse loggers compared to video surveillance. We then designed eight students' routine digital activities to collect a multimodal dataset and analyze the patterns and correlations between gaze and mouse across various activities. Our proposed Joint Cross-Attention Fusion Net, a multimodal activity recognition framework, leverages the gaze-mouse relationship to yield improved classification performance by integrating cross-modal representations through a cross-attention mechanism and integrating the joint features that characterize gaze-mouse coordination. Evaluation results show that our method can achieve up to 94.87% F1-score in predicting 8-classes activities, with an improvement of at least 7.44% over using gaze or mouse data independently. This research illuminates new possibilities for monitoring student engagement in intelligent education systems, also suggesting a promising strategy for melding perception and action modalities in behavioral analysis across a range of ubiquitous computing environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
西湖醋鱼完成签到,获得积分10
1秒前
圆锥香蕉举报Kayla求助涉嫌违规
2秒前
ww完成签到 ,获得积分10
2秒前
大模型应助清新的三毒采纳,获得10
2秒前
3秒前
3秒前
问心发布了新的文献求助10
4秒前
三十三发布了新的文献求助10
4秒前
tong完成签到,获得积分10
4秒前
Birdy完成签到,获得积分20
4秒前
cc完成签到,获得积分10
4秒前
6秒前
Yuson_L完成签到,获得积分10
6秒前
轻松的雨竹完成签到,获得积分10
6秒前
韶诗珊发布了新的文献求助10
6秒前
Islay50ppm完成签到,获得积分10
6秒前
李君然完成签到,获得积分10
6秒前
7秒前
小蘑菇应助负责的母鸡采纳,获得10
7秒前
晴云完成签到,获得积分20
8秒前
科研通AI6应助娇气的摩托采纳,获得10
8秒前
乐乐应助dyy采纳,获得10
8秒前
研究牲给研究牲的求助进行了留言
8秒前
慕青应助lolo采纳,获得10
9秒前
小鹿完成签到,获得积分10
9秒前
早睡早起发布了新的文献求助20
9秒前
Yuson_L发布了新的文献求助10
10秒前
JamesPei应助tingi采纳,获得10
10秒前
10秒前
科研通AI2S应助陈M雯采纳,获得10
11秒前
小杭76应助老实的问寒采纳,获得10
12秒前
自由的云朵完成签到 ,获得积分10
12秒前
小二郎应助believe采纳,获得10
12秒前
12秒前
我是老大应助张不大采纳,获得10
13秒前
13秒前
js完成签到,获得积分10
13秒前
zzzzz完成签到,获得积分10
13秒前
邱穗发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409994
求助须知:如何正确求助?哪些是违规求助? 4527505
关于积分的说明 14111164
捐赠科研通 4441880
什么是DOI,文献DOI怎么找? 2437744
邀请新用户注册赠送积分活动 1429674
关于科研通互助平台的介绍 1407750