亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrating Gaze and Mouse Via Joint Cross-Attention Fusion Net for Students' Activity Recognition in E-learning

凝视 模式 多模式学习 计算机科学 感知 模态(人机交互) 模式(计算机接口) 活动识别 人机交互 人工智能 机器学习 心理学 社会科学 神经科学 社会学
作者
R.H. Zhu,Shi Liang,Yunpeng Song,Zhongmin Cai
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:7 (3): 1-35
标识
DOI:10.1145/3610876
摘要

E-learning has emerged as an indispensable educational mode in the post-epidemic era. However, this mode makes it difficult for students to stay engaged in learning without appropriate activity monitoring. Our work explores a promising solution that combines gaze and mouse data to recognize students' activities, thereby facilitating activity monitoring and analysis during e-learning. We initially surveyed 200 students from a local university, finding more acceptance for eye trackers and mouse loggers compared to video surveillance. We then designed eight students' routine digital activities to collect a multimodal dataset and analyze the patterns and correlations between gaze and mouse across various activities. Our proposed Joint Cross-Attention Fusion Net, a multimodal activity recognition framework, leverages the gaze-mouse relationship to yield improved classification performance by integrating cross-modal representations through a cross-attention mechanism and integrating the joint features that characterize gaze-mouse coordination. Evaluation results show that our method can achieve up to 94.87% F1-score in predicting 8-classes activities, with an improvement of at least 7.44% over using gaze or mouse data independently. This research illuminates new possibilities for monitoring student engagement in intelligent education systems, also suggesting a promising strategy for melding perception and action modalities in behavioral analysis across a range of ubiquitous computing environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尊敬的雪兰完成签到,获得积分20
2秒前
无极微光应助小吴采纳,获得20
13秒前
小枣完成签到 ,获得积分10
15秒前
26秒前
28秒前
烂漫的涫完成签到 ,获得积分10
30秒前
温柔锦程发布了新的文献求助10
33秒前
等意送汝完成签到 ,获得积分10
38秒前
哑巴和喇叭完成签到 ,获得积分10
38秒前
kei完成签到 ,获得积分10
41秒前
49秒前
科研通AI6.1应助panda采纳,获得30
50秒前
m李完成签到 ,获得积分10
56秒前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
1分钟前
杨天天完成签到 ,获得积分0
1分钟前
Akim应助读书的时候采纳,获得10
1分钟前
科研通AI6.1应助WDD采纳,获得10
1分钟前
李爱国应助大意的念寒采纳,获得10
1分钟前
Iris完成签到 ,获得积分10
1分钟前
1分钟前
向北要上岸完成签到 ,获得积分10
1分钟前
乐乐应助LaaBi采纳,获得10
1分钟前
WDD发布了新的文献求助10
1分钟前
1分钟前
1分钟前
桐夜完成签到 ,获得积分10
1分钟前
YB发布了新的文献求助10
2分钟前
2分钟前
大大王发布了新的文献求助10
2分钟前
2分钟前
2分钟前
w。发布了新的文献求助10
2分钟前
LaaBi发布了新的文献求助10
2分钟前
2分钟前
明理的蜗牛完成签到,获得积分10
2分钟前
大大王完成签到,获得积分20
2分钟前
xaopng完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739381
求助须知:如何正确求助?哪些是违规求助? 5385826
关于积分的说明 15339673
捐赠科研通 4881965
什么是DOI,文献DOI怎么找? 2624032
邀请新用户注册赠送积分活动 1572725
关于科研通互助平台的介绍 1529527