GPCNDTA: Prediction of drug-target binding affinity through cross-attention networks augmented with graph features and pharmacophores

药效团 计算机科学 人工智能 药物发现 分子内力 交互信息 机器学习 化学 数学 立体化学 生物化学 统计
作者
Li Zhang,Chun-Chun Wang,Zhang Yon,Xing Chen
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:166: 107512-107512 被引量:17
标识
DOI:10.1016/j.compbiomed.2023.107512
摘要

Drug-target affinity prediction is a challenging task in drug discovery. The latest computational models have limitations in mining edge information in molecule graphs, accessing to knowledge in pharmacophores, integrating multimodal data of the same biomolecule and realizing effective interactions between two different biomolecules. To solve these problems, we proposed a method called Graph features and Pharmacophores augmented Cross-attention Networks based Drug-Target binding Affinity prediction (GPCNDTA). First, we utilized the GNN module, the linear projection unit and self-attention layer to correspondingly extract features of drugs and proteins. Second, we devised intramolecular and intermolecular cross-attention to respectively fuse and interact features of drugs and proteins. Finally, the linear projection unit was applied to gain final features of drugs and proteins, and the Multi-Layer Perceptron was employed to predict drug-target binding affinity. Three major innovations of GPCNDTA are as follows: (i) developing the residual CensNet and the residual EW-GCN to correspondingly extract features of drug and protein graphs, (ii) regarding pharmacophores as a new type of priors to heighten drug-target affinity prediction performance, and (iii) devising intramolecular and intermolecular cross-attention, in which the intramolecular cross-attention realizes the effective fusion of different modal data related to the same biomolecule, and the intermolecular cross-attention fulfills the information interaction between two different biomolecules in attention space. The test results on five benchmark datasets imply that GPCNDTA achieves the best performance compared with state-of-the-art computational models. Besides, relying on ablation experiments, we proved effectiveness of GNN modules, pharmacophores and two cross-attention strategies in improving the prediction accuracy, stability and reliability of GPCNDA. In case studies, we applied GPCNDTA to predict binding affinities between 3C-like proteinase and 185 drugs, and observed that most binding affinities predicted by GPCNDTA are close to corresponding experimental measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hjj发布了新的文献求助10
刚刚
刚刚
双勾玉发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
2秒前
起司嗯发布了新的文献求助30
2秒前
长虹完成签到,获得积分10
2秒前
3秒前
vision发布了新的文献求助10
4秒前
桑榆非晚完成签到,获得积分10
4秒前
hui完成签到,获得积分20
4秒前
baby的跑男完成签到,获得积分10
4秒前
Faith完成签到,获得积分10
5秒前
5秒前
Mercurius完成签到,获得积分10
6秒前
6秒前
6秒前
ganzhongxin完成签到,获得积分10
6秒前
12356完成签到,获得积分10
6秒前
7秒前
今后应助白华苍松采纳,获得10
7秒前
跳跃乘风发布了新的文献求助20
7秒前
不舍天真发布了新的文献求助20
8秒前
坚强的樱发布了新的文献求助10
8秒前
温暖以蓝发布了新的文献求助10
8秒前
8秒前
wanci应助幸福胡萝卜采纳,获得10
8秒前
8秒前
Ych发布了新的文献求助10
8秒前
gjy完成签到,获得积分10
9秒前
vision完成签到,获得积分10
9秒前
小小发布了新的文献求助10
9秒前
Katie完成签到,获得积分10
9秒前
LT发布了新的文献求助10
9秒前
10秒前
科研人完成签到,获得积分10
10秒前
FashionBoy应助彭彭采纳,获得10
10秒前
赤邪发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762