GPCNDTA: Prediction of drug-target binding affinity through cross-attention networks augmented with graph features and pharmacophores

药效团 计算机科学 人工智能 药物发现 分子内力 交互信息 机器学习 化学 数学 立体化学 生物化学 统计
作者
Li Zhang,Chun-Chun Wang,Zhang Yon,Xing Chen
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:166: 107512-107512 被引量:13
标识
DOI:10.1016/j.compbiomed.2023.107512
摘要

Drug-target affinity prediction is a challenging task in drug discovery. The latest computational models have limitations in mining edge information in molecule graphs, accessing to knowledge in pharmacophores, integrating multimodal data of the same biomolecule and realizing effective interactions between two different biomolecules. To solve these problems, we proposed a method called Graph features and Pharmacophores augmented Cross-attention Networks based Drug-Target binding Affinity prediction (GPCNDTA). First, we utilized the GNN module, the linear projection unit and self-attention layer to correspondingly extract features of drugs and proteins. Second, we devised intramolecular and intermolecular cross-attention to respectively fuse and interact features of drugs and proteins. Finally, the linear projection unit was applied to gain final features of drugs and proteins, and the Multi-Layer Perceptron was employed to predict drug-target binding affinity. Three major innovations of GPCNDTA are as follows: (i) developing the residual CensNet and the residual EW-GCN to correspondingly extract features of drug and protein graphs, (ii) regarding pharmacophores as a new type of priors to heighten drug-target affinity prediction performance, and (iii) devising intramolecular and intermolecular cross-attention, in which the intramolecular cross-attention realizes the effective fusion of different modal data related to the same biomolecule, and the intermolecular cross-attention fulfills the information interaction between two different biomolecules in attention space. The test results on five benchmark datasets imply that GPCNDTA achieves the best performance compared with state-of-the-art computational models. Besides, relying on ablation experiments, we proved effectiveness of GNN modules, pharmacophores and two cross-attention strategies in improving the prediction accuracy, stability and reliability of GPCNDA. In case studies, we applied GPCNDTA to predict binding affinities between 3C-like proteinase and 185 drugs, and observed that most binding affinities predicted by GPCNDTA are close to corresponding experimental measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡马发布了新的文献求助30
刚刚
研友_Z1x9ln发布了新的文献求助10
1秒前
1秒前
GuangChe完成签到,获得积分20
2秒前
CodeCraft应助wyg1994采纳,获得10
2秒前
3秒前
HZHZHZ完成签到,获得积分10
3秒前
3秒前
怕黑半仙完成签到,获得积分10
4秒前
SCL发布了新的文献求助10
5秒前
6秒前
小小发布了新的文献求助10
6秒前
6秒前
6秒前
MQY发布了新的文献求助10
7秒前
8秒前
9秒前
zuanyhou应助雪碧呀采纳,获得20
9秒前
打打应助史塔克采纳,获得10
9秒前
KAO_YU完成签到,获得积分10
9秒前
奋斗荣轩发布了新的文献求助10
9秒前
Hello应助重要冲采纳,获得10
9秒前
Yolo完成签到,获得积分10
9秒前
kaworul完成签到,获得积分10
10秒前
10秒前
10秒前
小二郎应助单纯紫寒采纳,获得10
11秒前
11秒前
11秒前
Andy完成签到,获得积分10
12秒前
宇文追命发布了新的文献求助10
13秒前
标致夜安发布了新的文献求助10
14秒前
不进则退发布了新的文献求助10
14秒前
研友_VZG7GZ应助tough采纳,获得10
14秒前
橙熟完成签到,获得积分10
14秒前
KAO_YU发布了新的文献求助10
14秒前
土豆子汁发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3249789
求助须知:如何正确求助?哪些是违规求助? 2892979
关于积分的说明 8275220
捐赠科研通 2561247
什么是DOI,文献DOI怎么找? 1389749
科研通“疑难数据库(出版商)”最低求助积分说明 651319
邀请新用户注册赠送积分活动 628088