GPCNDTA: Prediction of drug-target binding affinity through cross-attention networks augmented with graph features and pharmacophores

药效团 计算机科学 人工智能 药物发现 分子内力 交互信息 机器学习 化学 数学 立体化学 生物化学 统计
作者
Li Zhang,Chun-Chun Wang,Zhang Yon,Xing Chen
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:166: 107512-107512 被引量:22
标识
DOI:10.1016/j.compbiomed.2023.107512
摘要

Drug-target affinity prediction is a challenging task in drug discovery. The latest computational models have limitations in mining edge information in molecule graphs, accessing to knowledge in pharmacophores, integrating multimodal data of the same biomolecule and realizing effective interactions between two different biomolecules. To solve these problems, we proposed a method called Graph features and Pharmacophores augmented Cross-attention Networks based Drug-Target binding Affinity prediction (GPCNDTA). First, we utilized the GNN module, the linear projection unit and self-attention layer to correspondingly extract features of drugs and proteins. Second, we devised intramolecular and intermolecular cross-attention to respectively fuse and interact features of drugs and proteins. Finally, the linear projection unit was applied to gain final features of drugs and proteins, and the Multi-Layer Perceptron was employed to predict drug-target binding affinity. Three major innovations of GPCNDTA are as follows: (i) developing the residual CensNet and the residual EW-GCN to correspondingly extract features of drug and protein graphs, (ii) regarding pharmacophores as a new type of priors to heighten drug-target affinity prediction performance, and (iii) devising intramolecular and intermolecular cross-attention, in which the intramolecular cross-attention realizes the effective fusion of different modal data related to the same biomolecule, and the intermolecular cross-attention fulfills the information interaction between two different biomolecules in attention space. The test results on five benchmark datasets imply that GPCNDTA achieves the best performance compared with state-of-the-art computational models. Besides, relying on ablation experiments, we proved effectiveness of GNN modules, pharmacophores and two cross-attention strategies in improving the prediction accuracy, stability and reliability of GPCNDA. In case studies, we applied GPCNDTA to predict binding affinities between 3C-like proteinase and 185 drugs, and observed that most binding affinities predicted by GPCNDTA are close to corresponding experimental measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
李爱国应助lxr采纳,获得10
2秒前
孟长歌发布了新的文献求助10
3秒前
英姑应助Xnnnnnn采纳,获得10
4秒前
4秒前
王文华完成签到 ,获得积分10
4秒前
5秒前
5秒前
虚幻羊青完成签到,获得积分20
6秒前
小新完成签到,获得积分10
7秒前
7秒前
scn666完成签到,获得积分10
9秒前
善学以致用应助江野采纳,获得10
9秒前
科研通AI5应助Yingling采纳,获得10
9秒前
10秒前
10秒前
蓝冰发布了新的文献求助10
11秒前
情怀应助勤劳的雨文采纳,获得10
11秒前
13秒前
孟长歌完成签到,获得积分10
14秒前
16秒前
英俊的铭应助1423849686采纳,获得10
16秒前
小石头发布了新的文献求助10
17秒前
17秒前
科研菜鸡完成签到 ,获得积分10
17秒前
ztq417发布了新的文献求助10
18秒前
看不了一点文献给。。。的求助进行了留言
18秒前
量子星尘发布了新的文献求助10
18秒前
xiongyh10完成签到,获得积分10
19秒前
19秒前
SYLH应助攀登采纳,获得50
20秒前
爆米花应助ysy采纳,获得10
20秒前
小叶子发布了新的文献求助10
20秒前
飞飞飞完成签到,获得积分20
21秒前
21秒前
Akim应助Hcw0525采纳,获得10
21秒前
oo完成签到,获得积分10
23秒前
23秒前
研友_VZG7GZ应助yuaasusanaann采纳,获得10
24秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980299
求助须知:如何正确求助?哪些是违规求助? 3524227
关于积分的说明 11220587
捐赠科研通 3261687
什么是DOI,文献DOI怎么找? 1800886
邀请新用户注册赠送积分活动 879359
科研通“疑难数据库(出版商)”最低求助积分说明 807249