Graph Enhanced Hierarchical Reinforcement Learning for Goal-oriented Learning Path Recommendation

强化学习 计算机科学 目标导向 马尔可夫决策过程 图形 路径(计算) 人工智能 机器学习 任务(项目管理) 目标设定 马尔可夫过程 理论计算机科学 经济 心理学 社会心理学 统计 数学 管理 程序设计语言
作者
Qingyao Li,Wei Xia,Liang Yin,Jian Shen,Renting Rui,Weinan Zhang,Xianyu Chen,Ruiming Tang,Yong Yu
标识
DOI:10.1145/3583780.3614897
摘要

Goal-oriented Learning path recommendation aims to recommend learning items (concepts or exercises) step-by-step to a learner to promote the mastery level of her specific learning goals. By formulating this task as a Markov decision process, reinforcement learning (RL) methods have demonstrated great power. Although extensive research efforts have been made, previous methods still fail to recommend effective goal-oriented paths due to the under-utilizing of goals. Specifically, it is mainly reflected in two aspects: (1)The lack of goal planning. When learners have multiple goals with different difficulties, the previous methods can't fully utilize the difficulties and dependencies between goal learning items to plan the sequence of achieving these goals, making the path chaotic and inefficient; (2)The lack of efficiency in goal achieving. When pursuing a single goal, the path may contain learning items unrelated to the goal, which makes realizing a certain goal inefficient. To address these challenges, we present a novel Graph Enhanced Hierarchical Reinforcement Learning (GEHRL) framework for goal-oriented learning path recommendation. The framework divides learning path recommendation into two parts: sub-goal selection(planning) and sub-goal achieving(learning item recommendation). Specifically, we employ a high-level agent as a sub-goal selector to select sub-goals for the low-level agent to achieve. The low-level agent in the framework is to recommend learning items to the learner. To make the path only contain goal-related learning items to improve the efficiency of achieving the goal, we develop a graph-based candidate selector to constrain the action space of the low-level agent based on the sub-goal and knowledge graph. We also develop test-based internal reward for low-level training so that the sparsity problem of external reward can be alleviated. Extensive experiments on three different simulators demonstrate our framework achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lkx完成签到 ,获得积分10
刚刚
霸的彤发布了新的文献求助10
刚刚
jason发布了新的文献求助10
1秒前
Singularity应助lirongcas采纳,获得10
1秒前
3秒前
陶醉薯片完成签到,获得积分10
3秒前
SmuA完成签到,获得积分10
4秒前
4秒前
4秒前
曾经二娘完成签到,获得积分10
5秒前
xuan完成签到,获得积分10
6秒前
magpie完成签到 ,获得积分10
6秒前
zlw发布了新的文献求助10
9秒前
香蕉剑鬼发布了新的文献求助10
10秒前
genomed应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
11秒前
rosalieshi应助科研通管家采纳,获得30
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
Owen应助lllym采纳,获得10
13秒前
香蕉觅云应助yy采纳,获得10
14秒前
14秒前
15秒前
15秒前
科研通AI2S应助孙伟健采纳,获得10
17秒前
19秒前
朴素烨霖完成签到,获得积分10
19秒前
xie发布了新的文献求助10
20秒前
21秒前
22秒前
22秒前
痛苦的颜狗完成签到,获得积分10
22秒前
十二十三完成签到 ,获得积分10
23秒前
23秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170956
求助须知:如何正确求助?哪些是违规求助? 2821897
关于积分的说明 7936939
捐赠科研通 2482321
什么是DOI,文献DOI怎么找? 1322472
科研通“疑难数据库(出版商)”最低求助积分说明 633639
版权声明 602627