Graph Enhanced Hierarchical Reinforcement Learning for Goal-oriented Learning Path Recommendation

强化学习 计算机科学 目标导向 马尔可夫决策过程 图形 路径(计算) 人工智能 机器学习 任务(项目管理) 目标设定 马尔可夫过程 理论计算机科学 统计 经济 管理 程序设计语言 社会心理学 数学 心理学
作者
Qingyao Li,Wei Xia,Liang Yin,Jian Shen,Renting Rui,Weinan Zhang,Xianyu Chen,Ruiming Tang,Yong Yu
标识
DOI:10.1145/3583780.3614897
摘要

Goal-oriented Learning path recommendation aims to recommend learning items (concepts or exercises) step-by-step to a learner to promote the mastery level of her specific learning goals. By formulating this task as a Markov decision process, reinforcement learning (RL) methods have demonstrated great power. Although extensive research efforts have been made, previous methods still fail to recommend effective goal-oriented paths due to the under-utilizing of goals. Specifically, it is mainly reflected in two aspects: (1)The lack of goal planning. When learners have multiple goals with different difficulties, the previous methods can't fully utilize the difficulties and dependencies between goal learning items to plan the sequence of achieving these goals, making the path chaotic and inefficient; (2)The lack of efficiency in goal achieving. When pursuing a single goal, the path may contain learning items unrelated to the goal, which makes realizing a certain goal inefficient. To address these challenges, we present a novel Graph Enhanced Hierarchical Reinforcement Learning (GEHRL) framework for goal-oriented learning path recommendation. The framework divides learning path recommendation into two parts: sub-goal selection(planning) and sub-goal achieving(learning item recommendation). Specifically, we employ a high-level agent as a sub-goal selector to select sub-goals for the low-level agent to achieve. The low-level agent in the framework is to recommend learning items to the learner. To make the path only contain goal-related learning items to improve the efficiency of achieving the goal, we develop a graph-based candidate selector to constrain the action space of the low-level agent based on the sub-goal and knowledge graph. We also develop test-based internal reward for low-level training so that the sparsity problem of external reward can be alleviated. Extensive experiments on three different simulators demonstrate our framework achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
celia完成签到 ,获得积分10
1秒前
冰留完成签到 ,获得积分10
2秒前
fanlin完成签到,获得积分0
3秒前
飞快的盼易完成签到,获得积分10
4秒前
4秒前
缓慢海蓝完成签到 ,获得积分10
6秒前
俊秀的思山完成签到,获得积分10
12秒前
看文献完成签到,获得积分10
13秒前
内向白开水完成签到,获得积分10
14秒前
上官若男应助sonya采纳,获得10
15秒前
缥缈的冰旋完成签到,获得积分10
16秒前
poppysss完成签到,获得积分10
17秒前
凌晨五点的完成签到,获得积分10
19秒前
cn完成签到 ,获得积分10
19秒前
Jerry完成签到,获得积分10
19秒前
AJ完成签到 ,获得积分10
19秒前
健康幸福平安完成签到 ,获得积分10
19秒前
19秒前
24秒前
yamoon完成签到,获得积分10
25秒前
爱学习完成签到,获得积分10
25秒前
开心绿柳完成签到,获得积分10
26秒前
乾明少侠完成签到 ,获得积分10
26秒前
妮妮完成签到,获得积分10
26秒前
27秒前
27秒前
不吃芹菜完成签到,获得积分10
28秒前
huahua完成签到 ,获得积分10
30秒前
lesyeuxdexx完成签到 ,获得积分10
31秒前
大方汉堡完成签到,获得积分10
31秒前
suiwuya完成签到,获得积分10
31秒前
JasVe完成签到 ,获得积分10
31秒前
锐123发布了新的文献求助10
33秒前
明天过后完成签到,获得积分10
33秒前
yidemeihaoshijie完成签到 ,获得积分10
34秒前
tao完成签到 ,获得积分10
34秒前
35秒前
哎呀呀完成签到,获得积分10
35秒前
科研人员完成签到 ,获得积分10
36秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725509
求助须知:如何正确求助?哪些是违规求助? 3270406
关于积分的说明 9965753
捐赠科研通 2985443
什么是DOI,文献DOI怎么找? 1638024
邀请新用户注册赠送积分活动 777792
科研通“疑难数据库(出版商)”最低求助积分说明 747261