材料科学
法拉第效率
插层(化学)
石墨
化学工程
碳纤维
碱金属
离子
电池(电)
纳米结构
模板
锌
电极
纳米技术
无机化学
电化学
物理化学
有机化学
复合材料
冶金
复合数
化学
功率(物理)
物理
量子力学
工程类
作者
Daisuke Igarashi,Yôko Tanaka,Kei Kubota,Ryoichi Tatara,Hayato Maejima,Tomooki Hosaka,Shinichi Komaba
标识
DOI:10.1002/aenm.202302647
摘要
Abstract Hard carbon (HC) is a promising negative‐electrode material for Na‐ion batteries. HC electrochemically stores Na + ions, resulting in a non‐stoichiometric chemical composition depending on their nanoscale structure, including the carbon framework, and interstitial pores. Therefore, optimizing these structures for Na storage by altering the synthesis conditions can enhance the capacity of Na‐ion batteries. In this study, HCs using MgO, ZnO, and CaCO 3 as nanopore templates are systematically investigated, and the ZnO template is found to be particularly effective. By optimizing the concentration of ZnO embedded in the carbon matrix, utilizing a blend of zinc gluconate, and zinc acetate as starting materials, the optimal ZnO‐template HC demonstrates a reversible capacity of 464 mAh g −1 (corresponding to NaC 4.8 ) with high initial coulombic efficiency of 91.7% and low average potential of 0.18 V versus Na + /Na. Thus, a Na‐ion battery full cell consisting of Na 5/6 Ni 1/3 Fe 1/6 Mn 1/6 Ti 1/3 O 2 and the optimized ZnO‐template HC demonstrates a remarkable energy density of 312 Wh kg −1 , comparable to that of a Li‐ion battery with LiFePO 4 and graphite. Moreover, the ZnO‐template HC in a K half‐cell also displays a significant capacity of 381 mAh g −1 , that is, KC 5.8 where the alkali content is higher than stage‐1 graphite intercalation compounds, LiC 6 and KC 8 .
科研通智能强力驱动
Strongly Powered by AbleSci AI