Representation of Imprecision in Deep Neural Networks for Image Classification

人工智能 模式识别(心理学) 人工神经网络 集合(抽象数据类型) 计算机科学 图像(数学) 透视图(图形) 代表(政治) 特征(语言学) 机器学习 深信不疑网络 深度学习 上下文图像分类 过程(计算) 语言学 哲学 政治 政治学 法学 程序设计语言 操作系统
作者
Zuowei Zhang,Zhunga Liu,Liangbo Ning,Arnaud Martin,Jiexuan Xiong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:6
标识
DOI:10.1109/tnnls.2023.3329712
摘要

Quantification and reduction of uncertainty in deep-learning techniques have received much attention but ignored how to characterize the imprecision caused by such uncertainty. In some tasks, we prefer to obtain an imprecise result rather than being willing or unable to bear the cost of an error. For this purpose, we investigate the representation of imprecision in deep-learning (RIDL) techniques based on the theory of belief functions (TBF). First, the labels of some training images are reconstructed using the learning mechanism of neural networks to characterize the imprecision in the training set. In the process, a label assignment rule is proposed to reassign one or more labels to each training image. Once an image is assigned with multiple labels, it indicates that the image may be in an overlapping region of different categories from the feature perspective or the original label is wrong. Second, those images with multiple labels are rechecked. As a result, the imprecision (multiple labels) caused by the original labeling errors will be corrected, while the imprecision caused by insufficient knowledge is retained. Images with multiple labels are called imprecise ones, and they are considered to belong to meta-categories, the union of some specific categories. Third, the deep network model is retrained based on the reconstructed training set, and the test images are then classified. Finally, some test images that specific categories cannot distinguish will be assigned to meta-categories to characterize the imprecision in the results. Experiments based on some remarkable networks have shown that RIDL can improve accuracy (AC) and reasonably represent imprecision both in the training and testing sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞快的代天完成签到,获得积分10
刚刚
刚刚
陈乃雪完成签到,获得积分20
1秒前
1秒前
修勾发布了新的文献求助10
1秒前
科研通AI6应助云草采纳,获得10
1秒前
金zh发布了新的文献求助10
1秒前
光亮笑柳完成签到,获得积分10
1秒前
Ava应助华子采纳,获得10
2秒前
2秒前
2秒前
勤恳化蛹完成签到 ,获得积分10
3秒前
丘比特应助奇点采纳,获得10
3秒前
飞快的诗槐完成签到,获得积分10
3秒前
4秒前
CLH完成签到 ,获得积分10
5秒前
兴奋鼠标完成签到 ,获得积分10
5秒前
11发布了新的文献求助10
5秒前
5秒前
Hello~完成签到,获得积分10
5秒前
小白完成签到,获得积分20
6秒前
6秒前
7秒前
宓广缘发布了新的文献求助10
7秒前
Poyd发布了新的文献求助10
7秒前
顺利小蝴蝶完成签到,获得积分10
7秒前
march发布了新的文献求助30
7秒前
7秒前
Amber发布了新的文献求助10
8秒前
千里完成签到,获得积分10
8秒前
弗洛莉娅完成签到,获得积分10
10秒前
脑洞疼应助saudade采纳,获得10
10秒前
bkagyin应助一文字豪树采纳,获得10
10秒前
lily完成签到,获得积分10
10秒前
11秒前
11秒前
Owen应助carbonhan采纳,获得30
11秒前
11秒前
Hhl完成签到,获得积分10
12秒前
Pioneer发布了新的文献求助10
13秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388481
求助须知:如何正确求助?哪些是违规求助? 4510609
关于积分的说明 14035848
捐赠科研通 4421354
什么是DOI,文献DOI怎么找? 2428772
邀请新用户注册赠送积分活动 1421347
关于科研通互助平台的介绍 1400559