Representation of Imprecision in Deep Neural Networks for Image Classification

人工智能 模式识别(心理学) 人工神经网络 集合(抽象数据类型) 计算机科学 图像(数学) 透视图(图形) 代表(政治) 特征(语言学) 机器学习 深信不疑网络 深度学习 上下文图像分类 过程(计算) 程序设计语言 法学 操作系统 哲学 政治 语言学 政治学
作者
Zuowei Zhang,Zhunga Liu,Liangbo Ning,Arnaud Martin,Jiexuan Xiong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:6
标识
DOI:10.1109/tnnls.2023.3329712
摘要

Quantification and reduction of uncertainty in deep-learning techniques have received much attention but ignored how to characterize the imprecision caused by such uncertainty. In some tasks, we prefer to obtain an imprecise result rather than being willing or unable to bear the cost of an error. For this purpose, we investigate the representation of imprecision in deep-learning (RIDL) techniques based on the theory of belief functions (TBF). First, the labels of some training images are reconstructed using the learning mechanism of neural networks to characterize the imprecision in the training set. In the process, a label assignment rule is proposed to reassign one or more labels to each training image. Once an image is assigned with multiple labels, it indicates that the image may be in an overlapping region of different categories from the feature perspective or the original label is wrong. Second, those images with multiple labels are rechecked. As a result, the imprecision (multiple labels) caused by the original labeling errors will be corrected, while the imprecision caused by insufficient knowledge is retained. Images with multiple labels are called imprecise ones, and they are considered to belong to meta-categories, the union of some specific categories. Third, the deep network model is retrained based on the reconstructed training set, and the test images are then classified. Finally, some test images that specific categories cannot distinguish will be assigned to meta-categories to characterize the imprecision in the results. Experiments based on some remarkable networks have shown that RIDL can improve accuracy (AC) and reasonably represent imprecision both in the training and testing sets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松雁枫发布了新的文献求助10
刚刚
二拾发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
2秒前
2秒前
林早上发布了新的文献求助10
2秒前
所所应助清脆的书桃采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
Criminology34应助孙泉采纳,获得10
4秒前
脑洞疼应助孙泉采纳,获得10
4秒前
天天向上发布了新的文献求助10
4秒前
可爱的函函应助优美紫槐采纳,获得10
4秒前
7秒前
大个应助清爽的如波采纳,获得10
9秒前
9秒前
二拾完成签到,获得积分10
9秒前
WW完成签到,获得积分10
9秒前
麦地娜发布了新的文献求助10
10秒前
小蘑菇应助glj采纳,获得30
10秒前
10秒前
lxd完成签到,获得积分10
11秒前
搜集达人应助Yuanyuan采纳,获得10
11秒前
13秒前
yang完成签到,获得积分10
13秒前
CodeCraft应助橘子采纳,获得10
13秒前
WW发布了新的文献求助10
13秒前
一个左正蹬完成签到,获得积分10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
天天向上完成签到,获得积分10
18秒前
程小柒发布了新的文献求助10
19秒前
20秒前
CXS发布了新的文献求助10
20秒前
lemon发布了新的文献求助10
21秒前
21秒前
FashionBoy应助牛奶面包采纳,获得10
22秒前
Owen应助林一采纳,获得10
22秒前
22秒前
坚强小熊猫完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729634
求助须知:如何正确求助?哪些是违规求助? 5319737
关于积分的说明 15317209
捐赠科研通 4876640
什么是DOI,文献DOI怎么找? 2619450
邀请新用户注册赠送积分活动 1569001
关于科研通互助平台的介绍 1525547