Representation of Imprecision in Deep Neural Networks for Image Classification

人工智能 模式识别(心理学) 人工神经网络 集合(抽象数据类型) 计算机科学 图像(数学) 透视图(图形) 代表(政治) 特征(语言学) 机器学习 深信不疑网络 深度学习 上下文图像分类 过程(计算) 语言学 哲学 政治 政治学 法学 程序设计语言 操作系统
作者
Zuowei Zhang,Zhunga Liu,Liangbo Ning,Arnaud Martin,Jiexuan Xiong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:6
标识
DOI:10.1109/tnnls.2023.3329712
摘要

Quantification and reduction of uncertainty in deep-learning techniques have received much attention but ignored how to characterize the imprecision caused by such uncertainty. In some tasks, we prefer to obtain an imprecise result rather than being willing or unable to bear the cost of an error. For this purpose, we investigate the representation of imprecision in deep-learning (RIDL) techniques based on the theory of belief functions (TBF). First, the labels of some training images are reconstructed using the learning mechanism of neural networks to characterize the imprecision in the training set. In the process, a label assignment rule is proposed to reassign one or more labels to each training image. Once an image is assigned with multiple labels, it indicates that the image may be in an overlapping region of different categories from the feature perspective or the original label is wrong. Second, those images with multiple labels are rechecked. As a result, the imprecision (multiple labels) caused by the original labeling errors will be corrected, while the imprecision caused by insufficient knowledge is retained. Images with multiple labels are called imprecise ones, and they are considered to belong to meta-categories, the union of some specific categories. Third, the deep network model is retrained based on the reconstructed training set, and the test images are then classified. Finally, some test images that specific categories cannot distinguish will be assigned to meta-categories to characterize the imprecision in the results. Experiments based on some remarkable networks have shown that RIDL can improve accuracy (AC) and reasonably represent imprecision both in the training and testing sets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
RUI1128发布了新的文献求助10
5秒前
豆豆发布了新的文献求助10
5秒前
7秒前
8秒前
9秒前
脑洞大开发布了新的文献求助10
9秒前
wuhu发布了新的文献求助10
11秒前
guyuangyy完成签到,获得积分10
11秒前
平淡的梦菲完成签到,获得积分10
13秒前
13秒前
dongdong完成签到,获得积分20
14秒前
15秒前
科研小尹完成签到,获得积分20
15秒前
循环完成签到,获得积分10
15秒前
16秒前
雨后发布了新的文献求助20
16秒前
plusweng完成签到 ,获得积分10
18秒前
mignonettely发布了新的文献求助10
18秒前
hh发布了新的文献求助10
19秒前
一顿鸡米花完成签到,获得积分10
19秒前
clyde凌丫完成签到 ,获得积分10
20秒前
天一发布了新的文献求助10
21秒前
明理吐司完成签到,获得积分10
22秒前
踏实孤容完成签到,获得积分10
23秒前
一颗好困芽完成签到 ,获得积分10
24秒前
上官若男应助aichan采纳,获得10
25秒前
星辰大海应助nostalgic采纳,获得10
27秒前
豆豆完成签到,获得积分10
27秒前
han完成签到,获得积分10
27秒前
29秒前
祎祎完成签到,获得积分10
30秒前
hh完成签到,获得积分10
32秒前
32秒前
一一发布了新的文献求助10
33秒前
buerger完成签到,获得积分10
34秒前
Peppermint完成签到,获得积分10
34秒前
mujianhua完成签到,获得积分20
34秒前
34秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600866
求助须知:如何正确求助?哪些是违规求助? 4686434
关于积分的说明 14843743
捐赠科研通 4678603
什么是DOI,文献DOI怎么找? 2539007
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241