Representation of Imprecision in Deep Neural Networks for Image Classification

人工智能 模式识别(心理学) 人工神经网络 集合(抽象数据类型) 计算机科学 图像(数学) 透视图(图形) 代表(政治) 特征(语言学) 机器学习 深信不疑网络 深度学习 上下文图像分类 过程(计算) 语言学 哲学 政治 政治学 法学 程序设计语言 操作系统
作者
Zuowei Zhang,Zhunga Liu,Liangbo Ning,Arnaud Martin,Jiexuan Xiong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:6
标识
DOI:10.1109/tnnls.2023.3329712
摘要

Quantification and reduction of uncertainty in deep-learning techniques have received much attention but ignored how to characterize the imprecision caused by such uncertainty. In some tasks, we prefer to obtain an imprecise result rather than being willing or unable to bear the cost of an error. For this purpose, we investigate the representation of imprecision in deep-learning (RIDL) techniques based on the theory of belief functions (TBF). First, the labels of some training images are reconstructed using the learning mechanism of neural networks to characterize the imprecision in the training set. In the process, a label assignment rule is proposed to reassign one or more labels to each training image. Once an image is assigned with multiple labels, it indicates that the image may be in an overlapping region of different categories from the feature perspective or the original label is wrong. Second, those images with multiple labels are rechecked. As a result, the imprecision (multiple labels) caused by the original labeling errors will be corrected, while the imprecision caused by insufficient knowledge is retained. Images with multiple labels are called imprecise ones, and they are considered to belong to meta-categories, the union of some specific categories. Third, the deep network model is retrained based on the reconstructed training set, and the test images are then classified. Finally, some test images that specific categories cannot distinguish will be assigned to meta-categories to characterize the imprecision in the results. Experiments based on some remarkable networks have shown that RIDL can improve accuracy (AC) and reasonably represent imprecision both in the training and testing sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
宋志远完成签到,获得积分10
1秒前
明理的霸完成签到,获得积分10
1秒前
一碗鱼完成签到 ,获得积分10
2秒前
坦率含双发布了新的文献求助10
3秒前
3秒前
4秒前
7秒前
卑微老大发布了新的文献求助10
9秒前
爱lx发布了新的文献求助10
9秒前
大狒狒发布了新的文献求助20
11秒前
zho发布了新的文献求助10
12秒前
山楂发布了新的文献求助10
14秒前
笨笨的白梅完成签到,获得积分10
15秒前
久久驳回了Hello应助
16秒前
18秒前
wshwx完成签到 ,获得积分10
19秒前
脑洞疼应助美好芳采纳,获得10
19秒前
19秒前
21秒前
Airhug完成签到 ,获得积分10
24秒前
山楂完成签到,获得积分10
26秒前
kkk556发布了新的文献求助10
27秒前
坦率含双完成签到,获得积分10
27秒前
28秒前
醉烟雨发布了新的文献求助20
28秒前
烦人精完成签到 ,获得积分10
29秒前
31秒前
Lucas应助huihui采纳,获得10
34秒前
小胭胭发布了新的文献求助10
36秒前
39秒前
41秒前
大狒狒完成签到,获得积分10
41秒前
123lx完成签到,获得积分20
42秒前
秋雅发布了新的文献求助10
43秒前
肉末茄子完成签到,获得积分10
43秒前
外向的惜珊完成签到,获得积分10
44秒前
lixy完成签到,获得积分10
44秒前
45秒前
小杨发布了新的文献求助20
45秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140482
求助须知:如何正确求助?哪些是违规求助? 2791338
关于积分的说明 7798605
捐赠科研通 2447661
什么是DOI,文献DOI怎么找? 1302020
科研通“疑难数据库(出版商)”最低求助积分说明 626402
版权声明 601194