Representation of Imprecision in Deep Neural Networks for Image Classification

人工智能 模式识别(心理学) 人工神经网络 集合(抽象数据类型) 计算机科学 图像(数学) 透视图(图形) 代表(政治) 特征(语言学) 机器学习 深信不疑网络 深度学习 上下文图像分类 过程(计算) 语言学 哲学 政治 政治学 法学 程序设计语言 操作系统
作者
Zuowei Zhang,Zhunga Liu,Liangbo Ning,Arnaud Martin,Jiexuan Xiong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:6
标识
DOI:10.1109/tnnls.2023.3329712
摘要

Quantification and reduction of uncertainty in deep-learning techniques have received much attention but ignored how to characterize the imprecision caused by such uncertainty. In some tasks, we prefer to obtain an imprecise result rather than being willing or unable to bear the cost of an error. For this purpose, we investigate the representation of imprecision in deep-learning (RIDL) techniques based on the theory of belief functions (TBF). First, the labels of some training images are reconstructed using the learning mechanism of neural networks to characterize the imprecision in the training set. In the process, a label assignment rule is proposed to reassign one or more labels to each training image. Once an image is assigned with multiple labels, it indicates that the image may be in an overlapping region of different categories from the feature perspective or the original label is wrong. Second, those images with multiple labels are rechecked. As a result, the imprecision (multiple labels) caused by the original labeling errors will be corrected, while the imprecision caused by insufficient knowledge is retained. Images with multiple labels are called imprecise ones, and they are considered to belong to meta-categories, the union of some specific categories. Third, the deep network model is retrained based on the reconstructed training set, and the test images are then classified. Finally, some test images that specific categories cannot distinguish will be assigned to meta-categories to characterize the imprecision in the results. Experiments based on some remarkable networks have shown that RIDL can improve accuracy (AC) and reasonably represent imprecision both in the training and testing sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
小二郎应助沉静的浩然采纳,获得10
1秒前
淡定小蜜蜂完成签到,获得积分20
2秒前
张乐渝完成签到,获得积分10
3秒前
芽1发布了新的文献求助10
4秒前
4秒前
aYXZ321发布了新的文献求助10
6秒前
我是老大应助淡定小蜜蜂采纳,获得10
6秒前
LILYpig完成签到 ,获得积分10
8秒前
ice完成签到 ,获得积分10
8秒前
年轻的醉冬完成签到 ,获得积分10
9秒前
庾稀完成签到,获得积分20
9秒前
阿肖呀完成签到,获得积分10
9秒前
小熊完成签到,获得积分10
9秒前
晚意完成签到 ,获得积分10
9秒前
Xie发布了新的文献求助10
10秒前
mm完成签到,获得积分10
11秒前
虚拟的觅山完成签到,获得积分10
11秒前
Zx_1993应助认真的不评采纳,获得10
12秒前
12秒前
13秒前
13秒前
典雅又夏完成签到,获得积分10
14秒前
高高从霜完成签到 ,获得积分10
15秒前
17秒前
徐自豪完成签到 ,获得积分10
17秒前
cbq完成签到 ,获得积分10
17秒前
Ava应助孙孙孙啊采纳,获得10
17秒前
18秒前
18秒前
yongjie发布了新的文献求助10
20秒前
20秒前
yyy发布了新的文献求助20
20秒前
21秒前
21秒前
qq完成签到 ,获得积分10
22秒前
Ryan完成签到,获得积分10
22秒前
HELPMEPLZ完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911216
求助须知:如何正确求助?哪些是违规求助? 4186705
关于积分的说明 13001055
捐赠科研通 3954531
什么是DOI,文献DOI怎么找? 2168334
邀请新用户注册赠送积分活动 1186721
关于科研通互助平台的介绍 1094125