亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Representation of Imprecision in Deep Neural Networks for Image Classification

人工智能 模式识别(心理学) 人工神经网络 集合(抽象数据类型) 计算机科学 图像(数学) 透视图(图形) 代表(政治) 特征(语言学) 机器学习 深信不疑网络 深度学习 上下文图像分类 过程(计算) 语言学 哲学 政治 政治学 法学 程序设计语言 操作系统
作者
Zuowei Zhang,Zhunga Liu,Liangbo Ning,Arnaud Martin,Jiexuan Xiong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:6
标识
DOI:10.1109/tnnls.2023.3329712
摘要

Quantification and reduction of uncertainty in deep-learning techniques have received much attention but ignored how to characterize the imprecision caused by such uncertainty. In some tasks, we prefer to obtain an imprecise result rather than being willing or unable to bear the cost of an error. For this purpose, we investigate the representation of imprecision in deep-learning (RIDL) techniques based on the theory of belief functions (TBF). First, the labels of some training images are reconstructed using the learning mechanism of neural networks to characterize the imprecision in the training set. In the process, a label assignment rule is proposed to reassign one or more labels to each training image. Once an image is assigned with multiple labels, it indicates that the image may be in an overlapping region of different categories from the feature perspective or the original label is wrong. Second, those images with multiple labels are rechecked. As a result, the imprecision (multiple labels) caused by the original labeling errors will be corrected, while the imprecision caused by insufficient knowledge is retained. Images with multiple labels are called imprecise ones, and they are considered to belong to meta-categories, the union of some specific categories. Third, the deep network model is retrained based on the reconstructed training set, and the test images are then classified. Finally, some test images that specific categories cannot distinguish will be assigned to meta-categories to characterize the imprecision in the results. Experiments based on some remarkable networks have shown that RIDL can improve accuracy (AC) and reasonably represent imprecision both in the training and testing sets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
英勇的半蕾完成签到,获得积分20
1分钟前
十柒完成签到 ,获得积分10
1分钟前
大个应助新秀微博采纳,获得10
2分钟前
朱明完成签到 ,获得积分10
2分钟前
852应助科研通管家采纳,获得10
3分钟前
3分钟前
新秀微博发布了新的文献求助10
4分钟前
5分钟前
欢喜的文轩完成签到 ,获得积分10
5分钟前
5分钟前
落后的初柳完成签到,获得积分10
5分钟前
cllk发布了新的文献求助10
5分钟前
科研通AI6应助刘小艾采纳,获得10
5分钟前
我是老大应助cllk采纳,获得10
6分钟前
xiaoqian完成签到,获得积分10
6分钟前
6分钟前
cllk完成签到,获得积分10
6分钟前
亲情之友完成签到,获得积分10
6分钟前
6分钟前
亲情之友发布了新的文献求助10
6分钟前
Iron_five完成签到 ,获得积分0
7分钟前
刘小艾发布了新的文献求助10
7分钟前
MchemG应助科研通管家采纳,获得50
7分钟前
MchemG应助科研通管家采纳,获得50
7分钟前
张秉环完成签到 ,获得积分10
7分钟前
2317659604完成签到,获得积分10
7分钟前
望向天空的鱼完成签到 ,获得积分10
7分钟前
兴奋的嚣完成签到 ,获得积分10
8分钟前
wjh完成签到,获得积分10
9分钟前
shhoing应助科研通管家采纳,获得10
9分钟前
hhr完成签到 ,获得积分10
9分钟前
9分钟前
wish完成签到 ,获得积分10
10分钟前
江沅完成签到 ,获得积分10
10分钟前
10分钟前
xmsyq完成签到 ,获得积分10
10分钟前
10分钟前
像个间谍完成签到 ,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558517
求助须知:如何正确求助?哪些是违规求助? 4643605
关于积分的说明 14671250
捐赠科研通 4584908
什么是DOI,文献DOI怎么找? 2515238
邀请新用户注册赠送积分活动 1489315
关于科研通互助平台的介绍 1459954