Representation of Imprecision in Deep Neural Networks for Image Classification

人工智能 模式识别(心理学) 人工神经网络 集合(抽象数据类型) 计算机科学 图像(数学) 透视图(图形) 代表(政治) 特征(语言学) 机器学习 深信不疑网络 深度学习 上下文图像分类 过程(计算) 程序设计语言 法学 操作系统 哲学 政治 语言学 政治学
作者
Zuowei Zhang,Zhunga Liu,Liangbo Ning,Arnaud Martin,Jiexuan Xiong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:6
标识
DOI:10.1109/tnnls.2023.3329712
摘要

Quantification and reduction of uncertainty in deep-learning techniques have received much attention but ignored how to characterize the imprecision caused by such uncertainty. In some tasks, we prefer to obtain an imprecise result rather than being willing or unable to bear the cost of an error. For this purpose, we investigate the representation of imprecision in deep-learning (RIDL) techniques based on the theory of belief functions (TBF). First, the labels of some training images are reconstructed using the learning mechanism of neural networks to characterize the imprecision in the training set. In the process, a label assignment rule is proposed to reassign one or more labels to each training image. Once an image is assigned with multiple labels, it indicates that the image may be in an overlapping region of different categories from the feature perspective or the original label is wrong. Second, those images with multiple labels are rechecked. As a result, the imprecision (multiple labels) caused by the original labeling errors will be corrected, while the imprecision caused by insufficient knowledge is retained. Images with multiple labels are called imprecise ones, and they are considered to belong to meta-categories, the union of some specific categories. Third, the deep network model is retrained based on the reconstructed training set, and the test images are then classified. Finally, some test images that specific categories cannot distinguish will be assigned to meta-categories to characterize the imprecision in the results. Experiments based on some remarkable networks have shown that RIDL can improve accuracy (AC) and reasonably represent imprecision both in the training and testing sets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Maxwell完成签到,获得积分10
刚刚
Wen发布了新的文献求助10
刚刚
薏米发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
1秒前
郭濹涵发布了新的文献求助10
1秒前
2秒前
阳光彩虹小白马关注了科研通微信公众号
2秒前
星辰大海应助QIQI采纳,获得10
2秒前
875259完成签到,获得积分10
3秒前
3秒前
ding应助恩恩天天开心采纳,获得10
3秒前
打打应助现代的糖豆采纳,获得10
3秒前
科目三应助第七个星球采纳,获得10
3秒前
Sue完成签到 ,获得积分10
3秒前
英姑应助HEANZ采纳,获得10
3秒前
梧桐完成签到,获得积分10
3秒前
盒子完成签到,获得积分10
3秒前
Yuki发布了新的文献求助10
4秒前
tangzanwayne发布了新的文献求助10
4秒前
睡觉大王完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
精明的飞槐完成签到,获得积分10
5秒前
YUE完成签到,获得积分10
5秒前
xyy发布了新的文献求助10
5秒前
6秒前
6秒前
小二郎应助qiaoyun采纳,获得10
6秒前
shouyi886发布了新的文献求助10
7秒前
7秒前
安生发布了新的文献求助10
7秒前
875259发布了新的文献求助10
7秒前
香蕉觅云应助Sue采纳,获得10
7秒前
小马甲应助LG采纳,获得30
8秒前
8秒前
科研通AI2S应助Tooth7采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894