人类连接体项目
磁共振弥散成像
纤维束成像
人工智能
计算机科学
模式识别(心理学)
连接体
计算机视觉
磁共振成像
神经科学
心理学
功能连接
医学
放射科
作者
Fan Zhang,Kang Ik Kevin Cho,Johanna Seitz-Holland,Lipeng Ning,Jon Haitz Legarreta,Yogesh Rathi,Carl‐Fredrik Westin,Lauren J. O’Donnell,Ofer Pasternak
出处
期刊:IEEE Transactions on Medical Imaging
[Institute of Electrical and Electronics Engineers]
日期:2023-01-01
卷期号:: 1-1
被引量:1
标识
DOI:10.1109/tmi.2023.3331691
摘要
Parcellation of anatomically segregated cortical and subcortical brain regions is required in diffusion MRI (dMRI) analysis for region-specific quantification and better anatomical specificity of tractography. Most current dMRI parcellation approaches compute the parcellation from anatomical MRI (T1- or T2-weighted) data, using tools such as FreeSurfer or CAT12, and then register it to the diffusion space. However, the registration is challenging due to image distortions and low resolution of dMRI data, often resulting in mislabeling in the derived brain parcellation. Furthermore, these approaches are not applicable when anatomical MRI data is unavailable. As an alternative we developed the Deep Diffusion Parcellation (DDParcel), a deep learning method for fast and accurate parcellation of brain anatomical regions directly from dMRI data. The input to DDParcel are dMRI parameter maps and the output are labels for 101 anatomical regions corresponding to the FreeSurfer Desikan-Killiany (DK) parcellation. A multi-level fusion network leverages complementary information in the different input maps, at three network levels: input, intermediate layer, and output. DDParcel learns the registration of diffusion features to anatomical MRI from the high-quality Human Connectome Project data. Then, to predict brain parcellation for a new subject, the DDParcel network no longer requires anatomical MRI data but only the dMRI data. Comparing DDParcel’s parcellation with T1w-based parcellation shows higher test-retest reproducibility and a higher regional homogeneity, while requiring much less computational time. Generalizability is demonstrated on a range of populations and dMRI acquisition protocols. Utility of DDParcel’s parcellation is demonstrated on tractography analysis for fiber tract identification.
科研通智能强力驱动
Strongly Powered by AbleSci AI