Learning a Graph Neural Network with Cross Modality Interaction for Image Fusion

计算机科学 模态(人机交互) 人工智能 图形 合并(版本控制) 模式识别(心理学) 分割 特征学习 计算机视觉 理论计算机科学 情报检索
作者
Jiawei Li,J.Z Chen,Jinyuan Liu,Huimin Ma
标识
DOI:10.1145/3581783.3612135
摘要

Infrared and visible image fusion has gradually proved to be a vital fork in the field of multi-modality imaging technologies. In recent developments, researchers not only focus on the quality of fused images but also evaluate their performance in downstream tasks. Nevertheless, the majority of methods seldom put their eyes on mutual learning from different modalities, resulting in fused images lacking significant details and textures. To overcome this issue, we propose an interactive graph neural network (GNN)-based architecture between cross modality for fusion, called IGNet. Specifically, we first apply a multi-scale extractor to achieve shallow features, which are employed as the necessary input to build graph structures. Then, the graph interaction module can construct the extracted intermediate features of the infrared/visible branch into graph structures. Meanwhile, the graph structures of two branches interact for cross-modality and semantic learning, so that fused images can maintain the important feature expressions and enhance the performance of downstream tasks. Besides, the proposed leader nodes can improve information propagation in the same modality. Finally, we merge all graph features to get the fusion result. Extensive experiments on different datasets (i.e. TNO, MFNet, and M3FD) demonstrate that our IGNet can generate visually appealing fused images while scoring averagely 2.59% [email protected] and 7.77% mIoU higher in detection and segmentation than the compared state-of-the-art methods. The source code of the proposed IGNet can be available at https://github.com/lok-18/IGNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TKMY发布了新的文献求助10
刚刚
Wing完成签到 ,获得积分10
1秒前
默默的雁菡完成签到,获得积分10
1秒前
cassiel完成签到,获得积分10
1秒前
2秒前
碧蓝梦容发布了新的文献求助10
2秒前
非鱼鱼完成签到 ,获得积分10
2秒前
3秒前
飞星发布了新的文献求助10
3秒前
良辰应助雨er采纳,获得10
3秒前
慕青应助韩钰小宝采纳,获得10
4秒前
shua发布了新的文献求助10
4秒前
细心夏瑶完成签到,获得积分10
5秒前
Ella发布了新的文献求助10
5秒前
5秒前
今后应助Puan采纳,获得10
5秒前
曲夜白发布了新的文献求助10
5秒前
TRRR3完成签到,获得积分20
5秒前
5秒前
ikun发布了新的文献求助10
5秒前
6秒前
7秒前
宜醉宜游宜睡应助杨优秀采纳,获得10
8秒前
小芳应助搞怪哑铃采纳,获得20
8秒前
8秒前
科研通AI2S应助搞怪哑铃采纳,获得10
9秒前
从容芮应助搞怪哑铃采纳,获得10
9秒前
柳迎松完成签到 ,获得积分10
9秒前
10秒前
Xiaoshen发布了新的文献求助10
10秒前
11秒前
11秒前
mange发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
8R60d8完成签到,获得积分0
14秒前
克己复礼应助1233333采纳,获得10
14秒前
15秒前
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313258
求助须知:如何正确求助?哪些是违规求助? 2945620
关于积分的说明 8526418
捐赠科研通 2621404
什么是DOI,文献DOI怎么找? 1433530
科研通“疑难数据库(出版商)”最低求助积分说明 665037
邀请新用户注册赠送积分活动 650548