Learning a Graph Neural Network with Cross Modality Interaction for Image Fusion

计算机科学 模态(人机交互) 人工智能 图形 合并(版本控制) 模式识别(心理学) 分割 特征学习 计算机视觉 理论计算机科学 情报检索
作者
Jiawei Li,Jiansheng Chen,Jinyuan Liu,Huimin Ma
标识
DOI:10.1145/3581783.3612135
摘要

Infrared and visible image fusion has gradually proved to be a vital fork in the field of multi-modality imaging technologies. In recent developments, researchers not only focus on the quality of fused images but also evaluate their performance in downstream tasks. Nevertheless, the majority of methods seldom put their eyes on mutual learning from different modalities, resulting in fused images lacking significant details and textures. To overcome this issue, we propose an interactive graph neural network (GNN)-based architecture between cross modality for fusion, called IGNet. Specifically, we first apply a multi-scale extractor to achieve shallow features, which are employed as the necessary input to build graph structures. Then, the graph interaction module can construct the extracted intermediate features of the infrared/visible branch into graph structures. Meanwhile, the graph structures of two branches interact for cross-modality and semantic learning, so that fused images can maintain the important feature expressions and enhance the performance of downstream tasks. Besides, the proposed leader nodes can improve information propagation in the same modality. Finally, we merge all graph features to get the fusion result. Extensive experiments on different datasets (i.e. TNO, MFNet, and M3FD) demonstrate that our IGNet can generate visually appealing fused images while scoring averagely 2.59% [email protected] and 7.77% mIoU higher in detection and segmentation than the compared state-of-the-art methods. The source code of the proposed IGNet can be available at https://github.com/lok-18/IGNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的粉丝团团长应助TNU采纳,获得10
刚刚
海风吹过小镇完成签到 ,获得积分10
刚刚
十津川哈哈哈完成签到,获得积分10
刚刚
wanci应助神外魔法师采纳,获得30
1秒前
苍蓝所栖发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
感动又晴发布了新的文献求助10
3秒前
安详晓亦发布了新的文献求助10
3秒前
司徒绮发布了新的文献求助10
3秒前
3秒前
YK完成签到,获得积分10
4秒前
Gauss应助科研通管家采纳,获得20
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
Xinxxx应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
Xinxxx应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
大快朵颐发福完成签到,获得积分10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
只争朝夕应助科研通管家采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
高大的万恶完成签到,获得积分20
5秒前
浮游应助科研通管家采纳,获得10
5秒前
风趣凝海发布了新的文献求助10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
yao完成签到,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532310
求助须知:如何正确求助?哪些是违规求助? 4621065
关于积分的说明 14576628
捐赠科研通 4560938
什么是DOI,文献DOI怎么找? 2499025
邀请新用户注册赠送积分活动 1479001
关于科研通互助平台的介绍 1450265