已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MRI-Based Deep Learning Method for Classification of IDH Mutation Status

生物 生活质量研究 人工智能 计算机科学 病理 公共卫生 医学
作者
Chandan Ganesh Bangalore Yogananda,Benjamin Wagner,Nghi Cong Dung Truong,James M. Holcomb,Divya D. Reddy,Niloufar Saadat,Kimmo J. Hatanpaa,Toral Patel,Baowei Fei,Matthew Lee,Rajan Jain,Richard J. Bruce,Marco C. Pinho,Ananth J. Madhuranthakam,Joseph A. Maldjian
出处
期刊:Bioengineering [MDPI AG]
卷期号:10 (9): 1045-1045 被引量:6
标识
DOI:10.3390/bioengineering10091045
摘要

Isocitrate dehydrogenase (IDH) mutation status has emerged as an important prognostic marker in gliomas. This study sought to develop deep learning networks for non-invasive IDH classification using T2w MR images while comparing their performance to a multi-contrast network. Methods: Multi-contrast brain tumor MRI and genomic data were obtained from The Cancer Imaging Archive (TCIA) and The Erasmus Glioma Database (EGD). Two separate 2D networks were developed using nnU-Net, a T2w-image-only network (T2-net) and a multi-contrast network (MC-net). Each network was separately trained using TCIA (227 subjects) or TCIA + EGD data (683 subjects combined). The networks were trained to classify IDH mutation status and implement single-label tumor segmentation simultaneously. The trained networks were tested on over 1100 held-out datasets including 360 cases from UT Southwestern Medical Center, 136 cases from New York University, 175 cases from the University of Wisconsin-Madison, 456 cases from EGD (for the TCIA-trained network), and 495 cases from the University of California, San Francisco public database. A receiver operating characteristic curve (ROC) was drawn to calculate the AUC value to determine classifier performance. Results: T2-net trained on TCIA and TCIA + EGD datasets achieved an overall accuracy of 85.4% and 87.6% with AUCs of 0.86 and 0.89, respectively. MC-net trained on TCIA and TCIA + EGD datasets achieved an overall accuracy of 91.0% and 92.8% with AUCs of 0.94 and 0.96, respectively. We developed reliable, high-performing deep learning algorithms for IDH classification using both a T2-image-only and a multi-contrast approach. The networks were tested on more than 1100 subjects from diverse databases, making this the largest study on image-based IDH classification to date.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jeny发布了新的文献求助50
2秒前
孙明丽完成签到,获得积分10
5秒前
科研通AI5应助VDC采纳,获得10
5秒前
8秒前
DD发布了新的文献求助10
13秒前
小怪完成签到,获得积分10
15秒前
19秒前
wanci应助务实一斩采纳,获得10
22秒前
22秒前
能干的行云完成签到,获得积分10
24秒前
苏苏发布了新的文献求助10
25秒前
26秒前
27秒前
lisasaguan完成签到,获得积分10
28秒前
笨笨米卡发布了新的文献求助10
28秒前
29秒前
汉堡包应助苏苏采纳,获得10
30秒前
31秒前
小马甲应助害羞小土豆采纳,获得10
31秒前
32秒前
李健应助yuan采纳,获得10
32秒前
Ruuo616完成签到 ,获得积分10
33秒前
lisasaguan发布了新的文献求助10
35秒前
务实一斩发布了新的文献求助10
36秒前
36秒前
我是老大应助Amarantine采纳,获得10
36秒前
娜娜子完成签到 ,获得积分10
38秒前
apollo3232完成签到,获得积分10
39秒前
40秒前
林非鹿完成签到,获得积分10
42秒前
yuan完成签到,获得积分20
42秒前
鹿鹿完成签到,获得积分10
43秒前
VDC发布了新的文献求助10
44秒前
47秒前
47秒前
yuaner发布了新的文献求助10
47秒前
48秒前
乐乐应助yuaner采纳,获得10
50秒前
Dr.Xu发布了新的文献求助10
52秒前
林思完成签到,获得积分10
53秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538906
求助须知:如何正确求助?哪些是违规求助? 3116600
关于积分的说明 9326048
捐赠科研通 2814589
什么是DOI,文献DOI怎么找? 1546891
邀请新用户注册赠送积分活动 720659
科研通“疑难数据库(出版商)”最低求助积分说明 712145