Cooperative Co-Evolution for Large-Scale Multi-Objective Air Traffic Flow Management

计算机科学 概率逻辑 空中交通管制 航空 空中交通管理 水准点(测量) 进化算法 调度(生产过程) 模糊逻辑 多目标优化 分布式计算 运筹学 数学优化 人工智能 机器学习 工程类 数学 大地测量学 地理 航空航天工程
作者
Tong Guo,Yi Mei,Ke Tang,Wenbo Du
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:12
标识
DOI:10.1109/tevc.2023.3328886
摘要

Air traffic flow management (ATFM) is the key driver of efficient aviation. It aims at balancing traffic demand against airspace capacity by scheduling aircraft, which is critical for air navigation service providers in delivering secure and sustainable air transport. Nowadays, the scale of scheduled aircraft grows dramatically along with the sharp increase in air traffic demand, which brings heavy pressure to efficient scheduling. Regarding safety and efficiency as two fundamental objectives of air transport, this paper proposes a cooperative co-evolutionary algorithm to solve large-scale multi-objective ATFM problems. First, a new multi-objective co-evolution framework with an evolving external archive is devised, in which the subcomponents collaborate with each other via the knee solution of the archive. Second, a novel fuzzy decomposition method is specifically designed to split the large-scale ATFM problem into small-size subcomponents by utilizing the spatiotemporal correlations of aircraft. During optimization, the proposed algorithm can continuously receive feedback from the optimization process and make the decomposition more likely better suited to the problem. Third, a new contribution-based probabilistic resource allocation mechanism is developed to automatically assign the computing resources to the unbalanced subcomponents. Finally, a test suite with different scales extracted from real air traffic data is created. Extensive experimental results show that, given the same number of fitness evaluations, the proposed algorithm significantly outperforms the state-of-the-art baselines in terms of effectiveness on all the benchmark instances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智的紫丝完成签到,获得积分10
1秒前
2秒前
gym完成签到,获得积分10
3秒前
6秒前
6秒前
fr发布了新的文献求助10
6秒前
传奇3应助永康采纳,获得10
6秒前
Coco完成签到,获得积分10
8秒前
十三发布了新的文献求助10
9秒前
善学以致用应助gym采纳,获得10
9秒前
10秒前
11秒前
loulan完成签到,获得积分10
12秒前
15秒前
15秒前
hhdyf完成签到,获得积分10
16秒前
王奎完成签到,获得积分20
17秒前
17秒前
18秒前
SCI完成签到,获得积分10
20秒前
陈晨发布了新的文献求助10
20秒前
Llllllxxxxxxx发布了新的文献求助10
20秒前
22秒前
src发布了新的文献求助10
24秒前
打打应助yyy采纳,获得10
26秒前
所所应助噗噜噜采纳,获得30
26秒前
27秒前
自然剑完成签到,获得积分10
28秒前
28秒前
小超人完成签到 ,获得积分10
29秒前
fr完成签到,获得积分10
30秒前
爆米花应助SHD采纳,获得10
30秒前
CodeCraft应助无趣采纳,获得10
30秒前
自然剑发布了新的文献求助10
30秒前
思源应助DawudShan采纳,获得10
31秒前
脑洞疼应助陈晨采纳,获得10
31秒前
tiantian发布了新的文献求助10
33秒前
慕青应助123采纳,获得10
34秒前
桐桐应助聆听采纳,获得10
35秒前
嚯嚯完成签到,获得积分10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958021
求助须知:如何正确求助?哪些是违规求助? 3504166
关于积分的说明 11117289
捐赠科研通 3235515
什么是DOI,文献DOI怎么找? 1788289
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511