A novel Q-learning-based routing scheme using an intelligent filtering algorithm for flying ad hoc networks (FANETs)

计算机科学 架空(工程) 无线自组网 布线(电子设计自动化) 目的地顺序距离矢量路由 计算机网络 网络数据包 优化链路状态路由协议 自适应服务质量多跳路由 数据传输 路由协议 链路状态路由协议 无线 电信 操作系统
作者
Mehdi Hosseinzadeh,Saqib Ali,Liliana Feleagă,Liliana Feleagă,Mohammad Sadegh Yousefpoor,Efat Yousefpoor,Omed Hassan Ahmed,Amir Masoud Rahmani,Asif Mehmood
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier BV]
卷期号:35 (10): 101817-101817
标识
DOI:10.1016/j.jksuci.2023.101817
摘要

The flying ad hoc network (FANET) is an emerging network focused on unmanned aerial vehicles (UAVs) that has attracted the attention of researchers around the world. Due to the cooperation between UAVs in this network, data transfer between these UAVs is very essential. Routing protocols must determine how to make routing paths for each UAV with others in a wireless ad hoc network to facilitate the data transmission between UAVs. Nowadays, reinforcement learning (RL), especially Q-learning, is an effective response for solving existing challenges in the routing approaches and adding features such as autonomous, self-adaptive, and self-learning to these approaches. In this paper, Q-learning is used to enhance and increase network performance, and a Q-learning-based routing method using an intelligent filtering algorithm called QRF is presented for FANETs. The main innovation in this paper is that QRF manages the size of the state space using the proposed filtering algorithm. This will increase the convergence rate of the Q-learning-based routing algorithm. On the other hand, QRF regulates the learning parameters related to Q-learning so that this scheme is better adapted to the FANET environment. In the last step, the network simulator version 2 (NS2) is employed to execute the simulation process related to QRF. In this process, five evaluation criteria, namely energy consumption, packet delivery rate, overhead, end-to-end delay, and network longevity are evaluated, and the results obtained from QRF are compared with those of QFAN, QTAR, and QGeo. The simulation results in this paper show that QRF makes a balanced energy distribution between UAVs and thus extends the network longevity. Moreover, the intelligent filtering algorithm designed in QRF has reduced delay in the routing process but is associated with communication overhead.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuangma完成签到,获得积分10
2秒前
zhaoyuqing完成签到 ,获得积分10
3秒前
3秒前
穆紫应助科研通管家采纳,获得10
4秒前
pfshan应助科研通管家采纳,获得10
4秒前
穆紫应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
pfshan应助科研通管家采纳,获得10
4秒前
穆紫应助科研通管家采纳,获得10
4秒前
竹筏过海应助科研通管家采纳,获得50
4秒前
大个应助科研通管家采纳,获得10
5秒前
竹筏过海应助科研通管家采纳,获得50
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
pfshan应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
5秒前
Brandy完成签到,获得积分10
8秒前
zho关闭了zho文献求助
12秒前
12秒前
zho关闭了zho文献求助
17秒前
开朗的傲丝完成签到 ,获得积分10
17秒前
18秒前
20秒前
zho关闭了zho文献求助
21秒前
左幻竹发布了新的文献求助10
23秒前
jason0023发布了新的文献求助10
25秒前
Orange应助笑点低的孤丹采纳,获得10
27秒前
29秒前
gxx完成签到,获得积分10
30秒前
30秒前
31秒前
小二郎应助生动的映菱采纳,获得10
31秒前
葛力发布了新的文献求助10
32秒前
无私啤酒完成签到,获得积分10
33秒前
小马甲应助凉拌土豆芽采纳,获得10
34秒前
Bebetter发布了新的文献求助10
36秒前
彭于晏应助烟云散采纳,获得10
38秒前
搞对完成签到 ,获得积分10
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672005
求助须知:如何正确求助?哪些是违规求助? 3228470
关于积分的说明 9780707
捐赠科研通 2938947
什么是DOI,文献DOI怎么找? 1610371
邀请新用户注册赠送积分活动 760671
科研通“疑难数据库(出版商)”最低求助积分说明 736145