A novel Q-learning-based routing scheme using an intelligent filtering algorithm for flying ad hoc networks (FANETs)

计算机科学 架空(工程) 无线自组网 布线(电子设计自动化) 目的地顺序距离矢量路由 计算机网络 网络数据包 优化链路状态路由协议 自适应服务质量多跳路由 数据传输 路由协议 链路状态路由协议 无线 电信 操作系统
作者
Mehdi Hosseinzadeh,Saqib Ali,Liliana Feleagă,Liliana Feleagă,Mohammad Sadegh Yousefpoor,Efat Yousefpoor,Omed Hassan Ahmed,Amir Masoud Rahmani,Asif Mehmood
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier]
卷期号:35 (10): 101817-101817
标识
DOI:10.1016/j.jksuci.2023.101817
摘要

The flying ad hoc network (FANET) is an emerging network focused on unmanned aerial vehicles (UAVs) that has attracted the attention of researchers around the world. Due to the cooperation between UAVs in this network, data transfer between these UAVs is very essential. Routing protocols must determine how to make routing paths for each UAV with others in a wireless ad hoc network to facilitate the data transmission between UAVs. Nowadays, reinforcement learning (RL), especially Q-learning, is an effective response for solving existing challenges in the routing approaches and adding features such as autonomous, self-adaptive, and self-learning to these approaches. In this paper, Q-learning is used to enhance and increase network performance, and a Q-learning-based routing method using an intelligent filtering algorithm called QRF is presented for FANETs. The main innovation in this paper is that QRF manages the size of the state space using the proposed filtering algorithm. This will increase the convergence rate of the Q-learning-based routing algorithm. On the other hand, QRF regulates the learning parameters related to Q-learning so that this scheme is better adapted to the FANET environment. In the last step, the network simulator version 2 (NS2) is employed to execute the simulation process related to QRF. In this process, five evaluation criteria, namely energy consumption, packet delivery rate, overhead, end-to-end delay, and network longevity are evaluated, and the results obtained from QRF are compared with those of QFAN, QTAR, and QGeo. The simulation results in this paper show that QRF makes a balanced energy distribution between UAVs and thus extends the network longevity. Moreover, the intelligent filtering algorithm designed in QRF has reduced delay in the routing process but is associated with communication overhead.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
大模型应助旺仔采纳,获得10
刚刚
1秒前
dandan发布了新的文献求助20
2秒前
量子星尘发布了新的文献求助10
3秒前
李健应助LW采纳,获得10
4秒前
贾学冲发布了新的文献求助10
4秒前
5秒前
5秒前
烟花应助细腻天德采纳,获得30
6秒前
7秒前
不摇头的向日葵完成签到,获得积分10
7秒前
7秒前
NexusExplorer应助song采纳,获得10
7秒前
深情安青应助王可乐采纳,获得10
8秒前
月乐完成签到,获得积分10
9秒前
刻苦大门完成签到 ,获得积分10
10秒前
沉默羔羊完成签到,获得积分10
10秒前
Sang发布了新的文献求助10
10秒前
happy发布了新的文献求助10
10秒前
虚幻唯雪关注了科研通微信公众号
11秒前
11秒前
lmgj发布了新的文献求助10
12秒前
manji发布了新的文献求助10
13秒前
丁一发布了新的文献求助10
13秒前
13秒前
smottom应助Wynne采纳,获得10
13秒前
13秒前
JamesPei应助吃肉璇璇采纳,获得10
15秒前
15秒前
旺仔发布了新的文献求助10
15秒前
17秒前
丫丫发布了新的文献求助10
17秒前
大个应助退堂鼓艺术家采纳,获得10
17秒前
17秒前
张云志发布了新的文献求助10
18秒前
科研通AI2S应助晚上吃什么采纳,获得10
19秒前
学术牛马发布了新的文献求助10
19秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300