A novel Q-learning-based routing scheme using an intelligent filtering algorithm for flying ad hoc networks (FANETs)

计算机科学 架空(工程) 无线自组网 布线(电子设计自动化) 目的地顺序距离矢量路由 计算机网络 网络数据包 优化链路状态路由协议 自适应服务质量多跳路由 数据传输 路由协议 链路状态路由协议 无线 电信 操作系统
作者
Mehdi Hosseinzadeh,Saqib Ali,Liliana Feleagă,Liliana Feleagă,Mohammad Sadegh Yousefpoor,Efat Yousefpoor,Omed Hassan Ahmed,Amir Masoud Rahmani,Asif Mehmood
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier]
卷期号:35 (10): 101817-101817
标识
DOI:10.1016/j.jksuci.2023.101817
摘要

The flying ad hoc network (FANET) is an emerging network focused on unmanned aerial vehicles (UAVs) that has attracted the attention of researchers around the world. Due to the cooperation between UAVs in this network, data transfer between these UAVs is very essential. Routing protocols must determine how to make routing paths for each UAV with others in a wireless ad hoc network to facilitate the data transmission between UAVs. Nowadays, reinforcement learning (RL), especially Q-learning, is an effective response for solving existing challenges in the routing approaches and adding features such as autonomous, self-adaptive, and self-learning to these approaches. In this paper, Q-learning is used to enhance and increase network performance, and a Q-learning-based routing method using an intelligent filtering algorithm called QRF is presented for FANETs. The main innovation in this paper is that QRF manages the size of the state space using the proposed filtering algorithm. This will increase the convergence rate of the Q-learning-based routing algorithm. On the other hand, QRF regulates the learning parameters related to Q-learning so that this scheme is better adapted to the FANET environment. In the last step, the network simulator version 2 (NS2) is employed to execute the simulation process related to QRF. In this process, five evaluation criteria, namely energy consumption, packet delivery rate, overhead, end-to-end delay, and network longevity are evaluated, and the results obtained from QRF are compared with those of QFAN, QTAR, and QGeo. The simulation results in this paper show that QRF makes a balanced energy distribution between UAVs and thus extends the network longevity. Moreover, the intelligent filtering algorithm designed in QRF has reduced delay in the routing process but is associated with communication overhead.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风信子deon01完成签到,获得积分10
1秒前
mailgo完成签到,获得积分10
3秒前
无限的山水完成签到,获得积分10
4秒前
腾腾完成签到 ,获得积分10
4秒前
胖哥发布了新的文献求助10
5秒前
Ryuichi完成签到 ,获得积分10
9秒前
小小智完成签到,获得积分10
11秒前
跳跃的鹏飞完成签到 ,获得积分10
12秒前
hebhm完成签到,获得积分10
13秒前
Minjalee完成签到,获得积分0
13秒前
清秀龙猫完成签到 ,获得积分10
16秒前
于洋完成签到 ,获得积分10
18秒前
大喜子完成签到 ,获得积分10
20秒前
zhangsan完成签到,获得积分10
22秒前
desperate完成签到 ,获得积分10
24秒前
如愿完成签到 ,获得积分0
24秒前
小高的茯苓糕完成签到,获得积分10
28秒前
heolmes完成签到 ,获得积分10
28秒前
神内打工人完成签到 ,获得积分10
29秒前
32秒前
小赞完成签到,获得积分10
33秒前
shimenwanzhao完成签到 ,获得积分0
34秒前
xiaohu完成签到 ,获得积分10
34秒前
沙漠西瓜皮完成签到 ,获得积分10
42秒前
hululu完成签到 ,获得积分10
43秒前
zodiac完成签到,获得积分10
43秒前
qhdsyxy完成签到 ,获得积分0
47秒前
嘿嘿完成签到 ,获得积分10
47秒前
49秒前
安琪发布了新的文献求助10
55秒前
方方别方完成签到 ,获得积分10
59秒前
孤独听雨的猫完成签到 ,获得积分10
1分钟前
从今伴君行完成签到,获得积分10
1分钟前
玉崟完成签到 ,获得积分10
1分钟前
安琪完成签到,获得积分10
1分钟前
zz完成签到,获得积分10
1分钟前
小九完成签到,获得积分10
1分钟前
神勇的冬瓜完成签到,获得积分10
1分钟前
Jasper应助creedli采纳,获得10
1分钟前
xiaofeng5838完成签到,获得积分10
1分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793757
关于积分的说明 7807197
捐赠科研通 2450021
什么是DOI,文献DOI怎么找? 1303576
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350