A novel Q-learning-based routing scheme using an intelligent filtering algorithm for flying ad hoc networks (FANETs)

计算机科学 架空(工程) 无线自组网 布线(电子设计自动化) 目的地顺序距离矢量路由 计算机网络 网络数据包 优化链路状态路由协议 自适应服务质量多跳路由 数据传输 路由协议 链路状态路由协议 无线 电信 操作系统
作者
Mehdi Hosseinzadeh,Saqib Ali,Liliana Feleagă,Liliana Feleagă,Mohammad Sadegh Yousefpoor,Efat Yousefpoor,Omed Hassan Ahmed,Amir Masoud Rahmani,Asif Mehmood
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier]
卷期号:35 (10): 101817-101817
标识
DOI:10.1016/j.jksuci.2023.101817
摘要

The flying ad hoc network (FANET) is an emerging network focused on unmanned aerial vehicles (UAVs) that has attracted the attention of researchers around the world. Due to the cooperation between UAVs in this network, data transfer between these UAVs is very essential. Routing protocols must determine how to make routing paths for each UAV with others in a wireless ad hoc network to facilitate the data transmission between UAVs. Nowadays, reinforcement learning (RL), especially Q-learning, is an effective response for solving existing challenges in the routing approaches and adding features such as autonomous, self-adaptive, and self-learning to these approaches. In this paper, Q-learning is used to enhance and increase network performance, and a Q-learning-based routing method using an intelligent filtering algorithm called QRF is presented for FANETs. The main innovation in this paper is that QRF manages the size of the state space using the proposed filtering algorithm. This will increase the convergence rate of the Q-learning-based routing algorithm. On the other hand, QRF regulates the learning parameters related to Q-learning so that this scheme is better adapted to the FANET environment. In the last step, the network simulator version 2 (NS2) is employed to execute the simulation process related to QRF. In this process, five evaluation criteria, namely energy consumption, packet delivery rate, overhead, end-to-end delay, and network longevity are evaluated, and the results obtained from QRF are compared with those of QFAN, QTAR, and QGeo. The simulation results in this paper show that QRF makes a balanced energy distribution between UAVs and thus extends the network longevity. Moreover, the intelligent filtering algorithm designed in QRF has reduced delay in the routing process but is associated with communication overhead.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
oreo完成签到,获得积分10
1秒前
wwss完成签到,获得积分10
1秒前
领导范儿应助Ruby采纳,获得10
1秒前
2秒前
lsx完成签到,获得积分10
2秒前
2秒前
白藏发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
收破烂的要不应助lllcx采纳,获得10
3秒前
Rocket完成签到,获得积分10
3秒前
nns完成签到,获得积分10
3秒前
4秒前
zliaoyuan完成签到,获得积分10
4秒前
4秒前
5秒前
洋芋包发布了新的文献求助10
5秒前
境屾发布了新的文献求助10
5秒前
vickylow完成签到,获得积分10
6秒前
wxZeng发布了新的文献求助10
6秒前
SciGPT应助Georgechan采纳,获得10
6秒前
6秒前
王士钰发布了新的文献求助10
8秒前
科研通AI6应助正在进行时采纳,获得10
8秒前
KIKI完成签到 ,获得积分10
8秒前
成就白秋完成签到,获得积分10
9秒前
9秒前
nns发布了新的文献求助10
9秒前
9秒前
9秒前
CodeCraft应助carly采纳,获得10
10秒前
11秒前
ffff发布了新的文献求助10
11秒前
Azlne发布了新的文献求助10
12秒前
Qinghen发布了新的文献求助10
12秒前
明理纹完成签到,获得积分10
12秒前
成就白秋发布了新的文献求助10
12秒前
13秒前
13秒前
扶瑶可接完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434739
求助须知:如何正确求助?哪些是违规求助? 4547066
关于积分的说明 14205914
捐赠科研通 4467159
什么是DOI,文献DOI怎么找? 2448413
邀请新用户注册赠送积分活动 1439364
关于科研通互助平台的介绍 1416076