Bearing fault diagnosis based on CNN-BiLSTM and residual module

计算机科学 模式识别(心理学) 残余物 卷积神经网络 人工智能 特征提取 噪音(视频) 断层(地质) 噪声抗扰度 方位(导航) 小波 人工神经网络 算法 电信 地质学 地震学 图像(数学) 传输(电信)
作者
Guanghua Fu,Qingjuan Wei,Yongsheng Yang,Chaofeng Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (12): 125050-125050 被引量:38
标识
DOI:10.1088/1361-6501/acf598
摘要

Abstract Bearings are key components of rotating machinery, and their fault diagnosis is essential for machinery operation. Bearing vibration signals belong to time series data, but traditional convolutional neural networks (CNNs) or recurrent neural networks cannot fully extract the fault features from these signals. To address the insufficient feature extraction and poor noise resistance, this paper proposes a fault diagnosis model based on continuous wavelet transform (CWT), CNN with channel attention, bidirectional long short-term memory network (BiLSTM) and residual module. Firstly, a parallel dual-path feature extraction mechanism is constructed which takes time-domain signals and time–frequency images transformed via CWT as the input respectively. Then BiLSTM extracts the time features of the signal as one path, and the CNN with efficient channel attention extracts the spatial features as the other path. This parallel neural network contributes to better feature extraction. Then, the residual module is applied to extract the global features to further improve the feature extraction ability and noise immunity. The experimental results demonstrate that the proposed model on the Case Western Reserve University dataset has better diagnostic accuracy under different working conditions and different signal-to-noise ratios than other methods. In addition, the model shows good generalization performance on Jiangnan University dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王留勇发布了新的文献求助10
1秒前
丘比特应助cc采纳,获得30
1秒前
小二郎应助jjj采纳,获得10
1秒前
1秒前
钮水香完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
咖啡豆完成签到,获得积分10
2秒前
王艺霖发布了新的文献求助10
2秒前
欣喜代秋完成签到,获得积分10
3秒前
3秒前
3秒前
小青椒应助果汁采纳,获得50
3秒前
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
niudayun给niudayun的求助进行了留言
4秒前
王括完成签到,获得积分20
4秒前
SIC发布了新的文献求助10
4秒前
怂怂发布了新的文献求助10
5秒前
共享精神应助gyq采纳,获得10
5秒前
5秒前
adeno发布了新的文献求助10
5秒前
5秒前
粗暴的达发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
清爽映之完成签到,获得积分10
6秒前
发财牛女发布了新的文献求助10
6秒前
墨与笙完成签到,获得积分10
7秒前
7秒前
121314wld发布了新的文献求助10
7秒前
JamesPei应助高高千万采纳,获得20
8秒前
早期早睡发布了新的文献求助10
8秒前
66发布了新的文献求助30
8秒前
小迷糊完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624997
求助须知:如何正确求助?哪些是违规求助? 4710900
关于积分的说明 14952616
捐赠科研通 4778944
什么是DOI,文献DOI怎么找? 2553493
邀请新用户注册赠送积分活动 1515444
关于科研通互助平台的介绍 1475731