iTransformer: Inverted Transformers Are Effective for Time Series Forecasting

计算机科学 变压器 系列(地层学) 工程类 地质学 电气工程 古生物学 电压
作者
Yong Liu,Tengge Hu,Haoran Zhang,Haixu Wu,Shiyu Wang,Lintao Ma,Mingsheng Long
出处
期刊:Cornell University - arXiv 被引量:340
标识
DOI:10.48550/arxiv.2310.06625
摘要

The recent boom of linear forecasting models questions the ongoing passion for architectural modifications of Transformer-based forecasters. These forecasters leverage Transformers to model the global dependencies over temporal tokens of time series, with each token formed by multiple variates of the same timestamp. However, Transformers are challenged in forecasting series with larger lookback windows due to performance degradation and computation explosion. Besides, the embedding for each temporal token fuses multiple variates that represent potential delayed events and distinct physical measurements, which may fail in learning variate-centric representations and result in meaningless attention maps. In this work, we reflect on the competent duties of Transformer components and repurpose the Transformer architecture without any modification to the basic components. We propose iTransformer that simply applies the attention and feed-forward network on the inverted dimensions. Specifically, the time points of individual series are embedded into variate tokens which are utilized by the attention mechanism to capture multivariate correlations; meanwhile, the feed-forward network is applied for each variate token to learn nonlinear representations. The iTransformer model achieves state-of-the-art on challenging real-world datasets, which further empowers the Transformer family with promoted performance, generalization ability across different variates, and better utilization of arbitrary lookback windows, making it a nice alternative as the fundamental backbone of time series forecasting. Code is available at this repository: https://github.com/thuml/iTransformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Sea_shark完成签到,获得积分10
刚刚
YY88687321完成签到 ,获得积分10
刚刚
1秒前
1秒前
默默海露发布了新的文献求助10
2秒前
lignin发布了新的文献求助10
2秒前
棋士应助Cloud采纳,获得10
2秒前
2秒前
蜀安应助笙箫采纳,获得30
2秒前
xiaoman发布了新的文献求助10
3秒前
sens完成签到,获得积分10
3秒前
是帆帆呀完成签到,获得积分10
3秒前
WZ发布了新的文献求助10
4秒前
A羊_发布了新的文献求助10
4秒前
5秒前
5秒前
JamesPei应助霸气剑通采纳,获得10
6秒前
merlinsong发布了新的文献求助10
7秒前
7秒前
8秒前
花花发布了新的文献求助10
8秒前
Walker完成签到,获得积分10
8秒前
华仔应助落寞的采文采纳,获得10
9秒前
青鱼发布了新的文献求助10
9秒前
lignin完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
TIANEO完成签到,获得积分20
10秒前
cytomix完成签到,获得积分10
10秒前
orixero应助年轻的冰淇淋采纳,获得10
10秒前
清新王老吉完成签到,获得积分10
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助30
12秒前
默默海露完成签到,获得积分20
12秒前
Vicky1111完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425