iTransformer: Inverted Transformers Are Effective for Time Series Forecasting

计算机科学 变压器 系列(地层学) 工程类 地质学 古生物学 电压 电气工程
作者
Yong Liu,Tengge Hu,Haoran Zhang,Haixu Wu,Shiyu Wang,Lintao Ma,Mingsheng Long
出处
期刊:Cornell University - arXiv 被引量:52
标识
DOI:10.48550/arxiv.2310.06625
摘要

The recent boom of linear forecasting models questions the ongoing passion for architectural modifications of Transformer-based forecasters. These forecasters leverage Transformers to model the global dependencies over temporal tokens of time series, with each token formed by multiple variates of the same timestamp. However, Transformers are challenged in forecasting series with larger lookback windows due to performance degradation and computation explosion. Besides, the embedding for each temporal token fuses multiple variates that represent potential delayed events and distinct physical measurements, which may fail in learning variate-centric representations and result in meaningless attention maps. In this work, we reflect on the competent duties of Transformer components and repurpose the Transformer architecture without any modification to the basic components. We propose iTransformer that simply applies the attention and feed-forward network on the inverted dimensions. Specifically, the time points of individual series are embedded into variate tokens which are utilized by the attention mechanism to capture multivariate correlations; meanwhile, the feed-forward network is applied for each variate token to learn nonlinear representations. The iTransformer model achieves state-of-the-art on challenging real-world datasets, which further empowers the Transformer family with promoted performance, generalization ability across different variates, and better utilization of arbitrary lookback windows, making it a nice alternative as the fundamental backbone of time series forecasting. Code is available at this repository: https://github.com/thuml/iTransformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云轩完成签到,获得积分10
1秒前
1秒前
1秒前
繁荣的向秋完成签到,获得积分10
2秒前
派大星完成签到 ,获得积分10
2秒前
zhing完成签到,获得积分10
3秒前
喜东东发布了新的文献求助30
5秒前
小鱼仔关注了科研通微信公众号
6秒前
叶子完成签到,获得积分10
7秒前
小鱼仔关注了科研通微信公众号
7秒前
CodeCraft应助高高采纳,获得10
7秒前
7秒前
8秒前
LX77bx完成签到,获得积分10
8秒前
刘若鑫完成签到 ,获得积分10
8秒前
冷酷的可乐完成签到,获得积分10
9秒前
叶子发布了新的文献求助10
11秒前
默默完成签到,获得积分20
11秒前
深情安青应助魏宏宇采纳,获得10
11秒前
12秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得30
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
Xujiamin完成签到,获得积分10
14秒前
zbclzf关注了科研通微信公众号
14秒前
从容安波发布了新的文献求助10
15秒前
levi发布了新的文献求助10
16秒前
开朗月饼完成签到,获得积分10
16秒前
静静爱科研完成签到,获得积分10
17秒前
不会取名啊完成签到,获得积分10
18秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140041
求助须知:如何正确求助?哪些是违规求助? 2790931
关于积分的说明 7797066
捐赠科研通 2447278
什么是DOI,文献DOI怎么找? 1301808
科研通“疑难数据库(出版商)”最低求助积分说明 626340
版权声明 601194