Expressed Barcoding Enables High-Resolution Tracking of the Evolution of Drug Tolerance

药品 癌症研究 癌症 生物 计算生物学 药理学 遗传学
作者
Jennifer L. Cotton,Javier Estrada,Vivek Sagar,Julie Chen,Michelle Piquet,John Alford,Youngchul Song,Xiaoyan Li,Markus Riester,Matthew T. DiMare,Katja Schumacher,Gaylor Boulay,Kathleen Sprouffske,Lin Fan,Tyler Burks,Leandra Mansur,Joel P. Wagner,Hyo‐eun C. Bhang,Oleg Iartchouk,John Reece-Hoyes
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:83 (21): 3611-3623 被引量:3
标识
DOI:10.1158/0008-5472.can-23-0144
摘要

Abstract For a majority of patients with non–small cell lung cancer with EGFR mutations, treatment with EGFR inhibitors (EGFRi) induces a clinical response. Despite this initial reduction in tumor size, residual disease persists that leads to disease relapse. Elucidating the preexisting biological differences between sensitive cells and surviving drug-tolerant persister cells and deciphering how drug-tolerant cells evolve in response to treatment could help identify strategies to improve the efficacy of EGFRi. In this study, we tracked the origins and clonal evolution of drug-tolerant cells at a high resolution by using an expressed barcoding system coupled with single-cell RNA sequencing. This platform enabled longitudinal profiling of gene expression and drug sensitivity in response to EGFRi across a large number of clones. Drug-tolerant cells had higher expression of key survival pathways such as YAP and EMT at baseline and could also differentially adapt their gene expression following EGFRi treatment compared with sensitive cells. In addition, drug combinations targeting common downstream components (MAPK) or orthogonal factors (chemotherapy) showed greater efficacy than EGFRi alone, which is attributable to broader targeting of the heterogeneous EGFRi-tolerance mechanisms present in tumors. Overall, this approach facilitates thorough examination of clonal evolution in response to therapy that could inform the development of improved diagnostic approaches and treatment strategies for targeting drug-tolerant cells. Significance: The evolution and heterogeneity of EGFR inhibitor tolerance are identified in a large number of clones at enhanced cellular and temporal resolution using an expressed barcode technology coupled with single-cell RNA sequencing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小蘑菇应助廖念采纳,获得10
3秒前
5秒前
苏苏发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
平常寒烟完成签到,获得积分10
7秒前
123456完成签到 ,获得积分10
7秒前
科研笨男人完成签到,获得积分10
8秒前
8秒前
芍药完成签到 ,获得积分10
9秒前
10秒前
20发布了新的文献求助10
11秒前
闻风听雨发布了新的文献求助10
12秒前
Xx完成签到,获得积分10
12秒前
13秒前
14秒前
笛九完成签到 ,获得积分10
14秒前
16秒前
万能图书馆应助诗意采纳,获得10
17秒前
VV完成签到,获得积分10
20秒前
隆龙完成签到,获得积分10
20秒前
Jiatong7完成签到,获得积分10
20秒前
leaolf应助科研通管家采纳,获得10
22秒前
科目三应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
fendy应助科研通管家采纳,获得50
22秒前
浮游应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
ding应助科研通管家采纳,获得10
23秒前
汉堡包应助科研通管家采纳,获得10
23秒前
LaTeXer应助科研通管家采纳,获得100
23秒前
星辰大海应助科研通管家采纳,获得10
23秒前
bkagyin应助科研通管家采纳,获得10
23秒前
Jasper应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
领导范儿应助科研通管家采纳,获得10
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911831
求助须知:如何正确求助?哪些是违规求助? 4187185
关于积分的说明 13003332
捐赠科研通 3955152
什么是DOI,文献DOI怎么找? 2168569
邀请新用户注册赠送积分活动 1187064
关于科研通互助平台的介绍 1094301