Creating Synthetic Experts with Generative Artificial Intelligence

生成语法 合成生物学 人工智能 计算机科学 工程类 生物 计算生物学
作者
Daniel M. Ringel
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:4
标识
DOI:10.2139/ssrn.4542949
摘要

Classification is paramount in today’s data-rich environment as firms increasingly depend on machine learning to distill intelligence from vast amounts of unstructured text such as news articles, reports, and social media. Contemporary classification models can swiftly identify constructs of interest, such as sentiment, authors’ arguments, or product categorizations in textual data. To train an effective classification model, many correctly labeled examples are required. While simple constructs can be labeled via crowdsourcing, more complex constructs necessitate the involvement of expert labelers—a scarce resource. This research leverages generative AI, specifically ChatGPT4, as a surrogate for human expertise in complex classification tasks. It assesses the feasibility of this approach in an empirical study that identifies marketing mix variables in consumers' posts on Twitter. The results demonstrate that, unlike crowdsourced labels, those generated by ChatGPT4 are in high agreement with expert labels. To overcome ChatGPT4's proprietary nature, slow processing speed, and high cost, this research approximates it with an open-source model that is fine-tuned on ChatGPT4's labels. The created “synthetic expert” not only exhibits near parity with ChatGPT4 in terms of expert agreement, but is also highly scalable, fully independent, and free from third-party constraints. The model and code is shared online to rapidly disseminate the potential of synthetic expertise for complex classification tasks across fields and functions in academia and practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
深情安青应助人间烟火采纳,获得10
1秒前
野生菜狗发布了新的文献求助10
2秒前
田様应助ziwei采纳,获得10
2秒前
二七关注了科研通微信公众号
3秒前
3秒前
4秒前
momo发布了新的文献求助20
5秒前
可乐应助well采纳,获得10
5秒前
爱啃文的小郝完成签到,获得积分10
6秒前
乐乐应助一蓑烟雨任平生采纳,获得10
6秒前
三月七完成签到,获得积分10
7秒前
moncypool发布了新的文献求助10
7秒前
打打应助dahuihui采纳,获得30
11秒前
11秒前
yangderder发布了新的文献求助10
14秒前
15秒前
彭于晏应助科研通管家采纳,获得10
15秒前
shiko完成签到,获得积分10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
不配.应助科研通管家采纳,获得20
15秒前
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
充电宝应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
16秒前
不配.应助科研通管家采纳,获得20
16秒前
思源应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
不配.应助科研通管家采纳,获得20
16秒前
大模型应助科研通管家采纳,获得10
16秒前
18秒前
wwfe发布了新的文献求助10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151673
求助须知:如何正确求助?哪些是违规求助? 2803099
关于积分的说明 7851899
捐赠科研通 2460474
什么是DOI,文献DOI怎么找? 1309813
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760