有机太阳能电池
结晶度
材料科学
接受者
存水弯(水管)
不对称
密度泛函理论
分子间力
化学物理
分子
离解(化学)
聚合物太阳能电池
分子物理学
光电子学
纳米技术
原子物理学
化学
计算化学
聚合物
能量转换效率
物理化学
凝聚态物理
有机化学
物理
量子力学
气象学
复合材料
作者
Xufan Zheng,Xunchang Wang,Fengbo Sun,Ming Wan,Zhiya Li,Cong Xiao,Tingting Cong,Tianyu Hu,Yuchen Liao,Renqiang Yang
标识
DOI:10.1016/j.cej.2023.145520
摘要
Reducing energy loss while ensuring the required charge collection is of vital importance to high-performance all-small-molecule organic solar cells (SM-OSCs) limited by high trap density (1016 ∼ 1018 cm−3) in bulk heterojunction films. Herein, we show that the trap density in SM-OSCs can be dramatically reduced by designing a small-molecule donor (SMD) using a skeleton asymmetry strategy. Compared with its symmetric counterpart, TBD-BCl with an asymmetric thienobenzodithiophene (TBD) central core has different rotational energy barriers and a transformed C-shaped configuration, endowing blend films with strong intermolecular interactions and higher crystallinity. Thus, blending TBD-BCl with the L8-BO acceptor leads to a low trap density of 3.21 × 1015 cm−3 and density of state of 46 meV relative to BDT-BCl:L8-BO films. In addition, joint experimental and theoretical studies revealed that the TBD-BCl:L8-BO complex with a much lower driving force can still facilitate exciton dissociation, suppress charge-carrier recombination, and significantly reduce energy loss in devices. As a result, SM-OSCs based on TBD-BCl:L8-BO deliver a higher efficiency of 16.2% and an improved Voc of 0.91 V. Overall, the experiments and theory calculations in this study provide a new perspective for designing SMDs that suppress trap states and reduce the energy loss in SM-OSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI