Hole transport materials for QLEDs: a combined approach of machine learning and atomistic simulation

计算机科学 量子点 材料科学 发光二极管 高效能源利用 电子迁移率 制作 纳米技术 光电子学 电气工程 工程类 医学 替代医学 病理
作者
Hadi Abroshan,H. Shaun Kwak,Anand Chandrasekaran,Alex K. Chew,Alexandr Fonari,Mathew D. Halls
标识
DOI:10.1117/12.2675778
摘要

QLEDs have emerged as an alternative for optoelectronic applications. However, for widespread application of QLEDs, the device efficiency is required to be improved. There is a significant energy level mismatch between the valence band of commonly used quantum dots (QDs) and the HOMO level of traditional hole transport materials (HTMs). Given the small energy level mismatch between the conduction bands of the QDs and commercial electron transport materials, charge carriers in the light-emitting layer are imbalanced. Such a charge imbalance decreases the efficiency of QLED devices, and thus it is of great importance to design novel HTL materials with small energy mismatch with the QDs. Given the numerous potential molecules in the organic space, employing expensive and time-consuming approaches based on chemical intuition and trial-and-error experimentation is practically ineffective. Thus, realizing next-generation QLEDs technologies requires a paradigm change in materials design and development. Here, we combine active learning (AL) and high-throughput quantum mechanical calculations as a novel strategy to efficiently navigate the search space in a large materials library. The AL enables a systematic material screening by accounting multiple optoelectronic properties while minimizing the number of calculations. We further evaluated the top candidates using atomistic simulations and machine learning to investigate charge mobility and thermal stability in their amorphous films. This work offers guidelines for efficient computational screening of materials for QLEDs, reducing laborious, time-consuming, and expensive computer simulations, materials synthesis, and device fabrication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
More完成签到,获得积分20
刚刚
婷婷完成签到,获得积分10
刚刚
3秒前
YDX发布了新的文献求助10
3秒前
CipherSage应助SJY采纳,获得10
4秒前
NoobMasterZYF完成签到,获得积分10
4秒前
4秒前
4秒前
科研通AI2S应助李锐采纳,获得10
5秒前
知许解夏应助李锐采纳,获得10
5秒前
乖猫要努力应助李锐采纳,获得10
5秒前
SYLH应助李锐采纳,获得10
5秒前
SYLH应助李锐采纳,获得10
5秒前
SYLH应助李锐采纳,获得10
5秒前
乖猫要努力应助李锐采纳,获得30
5秒前
6秒前
6秒前
罗永昊完成签到,获得积分10
6秒前
7秒前
科研通AI2S应助斯文明杰采纳,获得10
7秒前
情怀应助怕黑的莫茗采纳,获得30
8秒前
细心老头发布了新的文献求助10
8秒前
10秒前
罗永昊发布了新的文献求助10
10秒前
追寻访曼发布了新的文献求助10
12秒前
13秒前
14秒前
XHH1994发布了新的文献求助10
16秒前
16秒前
20秒前
21秒前
21秒前
ketsu完成签到,获得积分10
22秒前
23秒前
情怀应助lily采纳,获得10
23秒前
斯文明杰发布了新的文献求助10
24秒前
24秒前
KY Mr.WANG完成签到,获得积分10
25秒前
25秒前
小恐龙完成签到,获得积分10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959179
求助须知:如何正确求助?哪些是违规求助? 3505472
关于积分的说明 11124101
捐赠科研通 3237190
什么是DOI,文献DOI怎么找? 1789003
邀请新用户注册赠送积分活动 871507
科研通“疑难数据库(出版商)”最低求助积分说明 802824