Standardized Classification of Lung Adenocarcinoma Subtypes and Improvement of Grading Assessment Through Deep Learning

腺癌 病理 分级(工程) 医学 生物 内科学 癌症 生态学
作者
Kris Lami,Noriaki Ota,Shinsuke Yamaoka,Andrey Bychkov,Keitaro Matsumoto,Wataru Uegami,Jijgee Munkhdelger,Kurumi Seki,Odsuren Sukhbaatar,Richard Attanoos,Sabina Berezowska,Luka Brčić,Alberto Cavazza,John C. English,Alexandre Todorovic Fabro,Kaori Shintani‐Ishida,Yukio Kashima,Yuka Kitamura,Brandon T. Larsen,Alberto M. Marchevsky
出处
期刊:American Journal of Pathology [Elsevier BV]
卷期号:193 (12): 2066-2079 被引量:10
标识
DOI:10.1016/j.ajpath.2023.07.002
摘要

The histopathologic distinction of lung adenocarcinoma (LADC) subtypes is subject to high interobserver variability, which can compromise the optimal assessment of patient prognosis. Therefore, this study developed convolutional neural networks capable of distinguishing LADC subtypes and predicting disease-specific survival, according to the recently established LADC tumor grades. Consensus LADC histopathologic images were obtained from 17 expert pulmonary pathologists and one pathologist in training. Two deep learning models (AI-1 and AI-2) were trained to predict eight different LADC classes. Furthermore, the trained models were tested on an independent cohort of 133 patients. The models achieved high precision, recall, and F1 scores exceeding 0.90 for most of the LADC classes. Clear stratification of the three LADC grades was reached in predicting the disease-specific survival by the two models, with both Kaplan-Meier curves showing significance (P = 0.0017 and 0.0003). Moreover, both trained models showed high stability in the segmentation of each pair of predicted grades with low variation in the hazard ratio across 200 bootstrapped samples. These findings indicate that the trained convolutional neural networks improve the diagnostic accuracy of the pathologist and refine LADC grade assessment. Thus, the trained models are promising tools that may assist in the routine evaluation of LADC subtypes and grades in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助闫富扬采纳,获得10
1秒前
2秒前
田様应助JoshuaChen采纳,获得10
2秒前
假发君完成签到,获得积分10
2秒前
Akim应助地大空天采纳,获得10
3秒前
3秒前
jianjian完成签到,获得积分10
3秒前
华仔应助无糖零脂采纳,获得10
4秒前
灵巧的荔枝完成签到,获得积分10
4秒前
woiwxx完成签到,获得积分20
4秒前
无敌周周姐完成签到,获得积分10
4秒前
111222333完成签到 ,获得积分10
5秒前
脑洞疼应助粗心的雅绿采纳,获得10
5秒前
5秒前
5秒前
5秒前
7秒前
7秒前
火星上的糖豆完成签到,获得积分10
7秒前
桐桐应助Mikecheng采纳,获得10
8秒前
无奈行恶应助笨笨的之柔采纳,获得10
8秒前
huyuan发布了新的文献求助10
8秒前
Sandro完成签到,获得积分10
8秒前
8秒前
10秒前
10秒前
victory_liu发布了新的文献求助10
10秒前
10秒前
噗噗发布了新的文献求助10
10秒前
汉小弟完成签到,获得积分10
11秒前
小高同学发布了新的文献求助10
11秒前
11秒前
鑫鑫发布了新的文献求助10
12秒前
Bio应助明亮无颜采纳,获得50
12秒前
Tiffany发布了新的文献求助10
12秒前
烟花应助杰杰采纳,获得10
13秒前
wwwwwwwwww发布了新的文献求助10
13秒前
小蘑菇应助桢桢树采纳,获得10
13秒前
yf发布了新的文献求助30
13秒前
bkagyin应助s1mple采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582