Effect of pre-stress on surface integrity in micro milling: Modelling and experimentation

材料科学 残余应力 表面完整性 喷丸 表面粗糙度 磨料 表面光洁度 微尺度化学 喷丸 复合材料 压力(语言学) 冶金 数学 语言学 哲学 数学教育
作者
Rahul Yadav,Mayank Kumar,Nilanjan Das Chakladar,Ajay Sidpara,S. Paul
出处
期刊:Journal of Manufacturing Processes [Elsevier BV]
卷期号:102: 564-578 被引量:4
标识
DOI:10.1016/j.jmapro.2023.07.073
摘要

Recent years have witnessed rapid growth in microscale manufacturing, particularly in the biomedical, electronics and aerospace industries. Therefore, it is required to improve the capabilities of micro-cutting processes such as micro-milling to generate intricate features with high surface quality. The surface integrity of the machined materials is influenced by the cutting conditions, tool geometry and material properties. The novelty of the proposed work is to improve the surface finish and compressive residual stress of the milled slot by tailoring the pre-compressive stress condition. Ultrasonic-assisted abrasive peening is used to tailor the residual stress and obtained grain refinement on the surface. The micro-milling is performed on the peened surface of Ti-6Al-4V, Al-6061, and OFHC-Cu to investigate the surface roughness and residual stress. A hybrid model is developed to estimate the surface roughness considering the effect of tool geometry, process parameters, size effect and workpiece microstructure. Induced residual stress at the machined surface is simulated through the finite element (FE) method. Moreover, the FE model simulated the minimal chip thickness and contact pressure at the flank face and is deployed as an input to the analytical model for estimation of surface roughness. The pre-deformed material by peening reduced the surface roughness by 35 to 42 % on different materials and improved compressive residual stress due to grain refinement. The predicted average surface roughness and residual stress are validated with experimental results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助cfer采纳,获得10
1秒前
SciGPT应助机智谷蕊采纳,获得10
3秒前
如7而至发布了新的文献求助30
3秒前
4秒前
4秒前
CodeCraft应助王sir采纳,获得10
4秒前
无情的匪发布了新的文献求助10
4秒前
RESLR完成签到,获得积分20
6秒前
6秒前
Akim应助呆萌的夏柳采纳,获得10
6秒前
zh完成签到 ,获得积分10
6秒前
8秒前
9秒前
zyc1111111应助RESLR采纳,获得20
9秒前
9秒前
10秒前
11秒前
12秒前
科研通AI5应助如7而至采纳,获得30
12秒前
12秒前
13秒前
辛勤的乌发布了新的文献求助10
13秒前
14秒前
王sir发布了新的文献求助10
14秒前
15秒前
安沁完成签到,获得积分10
17秒前
ln发布了新的文献求助10
17秒前
特兰克斯发布了新的文献求助10
17秒前
17秒前
shunlibiye发布了新的文献求助30
18秒前
18秒前
赘婿应助李6666采纳,获得10
18秒前
赘婿应助闪闪采纳,获得10
19秒前
桐桐应助小娄采纳,获得10
20秒前
wk完成签到,获得积分10
20秒前
汪汪发布了新的文献求助10
20秒前
22秒前
22秒前
辛勤的乌完成签到,获得积分10
23秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975986
求助须知:如何正确求助?哪些是违规求助? 3520289
关于积分的说明 11202025
捐赠科研通 3256778
什么是DOI,文献DOI怎么找? 1798453
邀请新用户注册赠送积分活动 877605
科研通“疑难数据库(出版商)”最低求助积分说明 806482