M2MTR: Reposition Idle Taxis in the Many-to-Many Manner with Multi-agent Reinforcement Learning

出租车 计算机科学 强化学习 马尔可夫决策过程 闲置 任务(项目管理) 过程(计算) 极限(数学) 部分可观测马尔可夫决策过程 马尔可夫过程 运筹学 马尔可夫链 人工智能 运输工程 机器学习 马尔可夫模型 工程类 数学分析 统计 数学 系统工程 操作系统
作者
Hao Yu,Xi Guo,Jie Chen,Xiao Luo
出处
期刊:Lecture Notes in Computer Science 卷期号:: 569-583
标识
DOI:10.1007/978-3-031-46677-9_39
摘要

Ride-hailing apps, such as Didi and Uber, allow people to easily request a ride by inputting their desired origin and destination locations. Due to transportation system complexity and vast city areas, uneven distribution of vehicle supply versus rider demand frequently occurs. This can lead to overcrowded areas with insufficient taxis or sparsely populated zones with abundant empty taxis. To balance supply and demand, many studies have proposed taxi-repositioning methods. However, recent studies limit to repositioning taxis in the one-to-one manner. In this paper, we propose the M2MTR method that can reposition idle taxis in the many-to-many manner. We define the reposition task as a partially observable Markov decision process and define the optimization objectives. To find good reposition strategies, we propose the M2MTR method that is a variation of a multi-agent cooperative A2C method. To make models converge quickly, we design the rewards delicately. To update the policy networks efficiently, we design a local reward combiner. We build an environment simulator to train and evaluate M2MTR. Extensive experiments on real datasets show that M2MTR outperforms other three baseline algorithms. The reposition strategies obtained from M2MTR can make supply and demand more balance, can increase the response rates, and can reduce response time of taxis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LaTeXer应助隐形夕阳采纳,获得50
刚刚
lw发布了新的文献求助10
1秒前
1秒前
英姑应助Janusfaces采纳,获得10
1秒前
1秒前
plasmid完成签到,获得积分10
2秒前
Ava应助咕噜咕噜咕嘟咕嘟采纳,获得10
2秒前
3秒前
SHAO应助一块司康饼采纳,获得100
3秒前
嗯哼发布了新的文献求助10
3秒前
Rondab应助mariawang采纳,获得10
5秒前
MchemG应助酷酷的紫南采纳,获得30
6秒前
1111发布了新的文献求助10
6秒前
6秒前
continue发布了新的文献求助10
7秒前
zhangtong发布了新的文献求助10
7秒前
嘟嘟完成签到,获得积分10
7秒前
wdy111应助葡萄味的果茶采纳,获得20
8秒前
悦耳代真完成签到,获得积分10
8秒前
ysx完成签到,获得积分10
8秒前
9秒前
Orange应助淡淡夕阳采纳,获得10
9秒前
9秒前
yar重新开启了yl文献应助
10秒前
11秒前
11秒前
zhoup完成签到,获得积分20
12秒前
宝海青完成签到,获得积分10
12秒前
李健应助缓慢的含双采纳,获得10
12秒前
yqb完成签到,获得积分10
13秒前
上官若男应助笑点低的不采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
qifunongsuo1213完成签到,获得积分10
15秒前
chenzixin发布了新的文献求助10
15秒前
15秒前
明理致远发布了新的文献求助10
15秒前
yqb发布了新的文献求助10
15秒前
16秒前
alex完成签到,获得积分10
16秒前
研友_VZG7GZ应助受伤翠容采纳,获得10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021