Machine learning prediction and interpretation of the impact of microplastics on soil properties

微塑料 口译(哲学) 环境化学 环境科学 土壤科学 化学 计算机科学 程序设计语言
作者
Piumi Amasha Withana,Jie Li,Sachini Supunsala Senadheera,Chuanfang Fan,Yin Wang,Yong Sik Ok
出处
期刊:Environmental Pollution [Elsevier]
卷期号:341: 122833-122833 被引量:10
标识
DOI:10.1016/j.envpol.2023.122833
摘要

The annual microplastic (MP) release into soils is 4–23 times higher than that into oceans, significantly impacting soil quality. However, the mechanisms underlying how MPs impact soil properties remain largely unknown. Soil-MP interactions are complex because of soil heterogeneity and varying MP properties. This lack of understanding was exacerbated by the diverse experimental conditions and soil types used in this study. Predicting changes in soil properties in the presence of MPs is challenging, laborious, and time-consuming. To address these issues, machine learning was applied to fit datasets from peer-reviewed publications to predict and interpret how MPs influence soil properties, including pH, dissolved organic carbon (DOC), total P, NO3−-N, NH4+-N, and acid phosphatase enzyme activity (acid P). Among the developed models, the gradient boost regression (GBR) model showed the highest R2 (0.86–0.99) compared to the decision tree and random forest models. The GBR model interpretation showed that MP properties contributed more than 50% to altering the acid P and NO3−-N concentrations in soils, whereas they had a negligible impact on total P and 10–20% impact on soil pH, DOC, and NH4+-N. Specifically, the size of MPs was the dominant factor influencing acid P (89.3%), pH (71.6%), and DOC (44.5%) in soils. NO3−-N was mainly affected by the MP type (52.0%). The NH4+-N was mainly affected by the MP dose (46.8%). The quantitative insights into the impact of MPs on soil properties of this study could aid in understanding the roles of MPs in soil systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
高高兴兴完成签到,获得积分10
刚刚
冷酷的寒烟完成签到 ,获得积分10
1秒前
Chem is try完成签到,获得积分10
1秒前
2秒前
华仔应助Wellnemo采纳,获得10
2秒前
知性的岱周完成签到,获得积分10
3秒前
3秒前
4秒前
安寒完成签到,获得积分10
5秒前
涨涨涨完成签到,获得积分10
5秒前
白飞应助碧蓝的迎南采纳,获得10
5秒前
自信的孱完成签到,获得积分20
6秒前
桐桐应助十一玮采纳,获得10
6秒前
眼睛大姒发布了新的文献求助10
6秒前
糖糖完成签到,获得积分10
6秒前
冷艳薯片完成签到,获得积分10
6秒前
6秒前
7秒前
xiaoxiao完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
明理萃发布了新的文献求助20
8秒前
ah完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
12秒前
安沐发布了新的文献求助10
13秒前
研友_VZG7GZ应助xsc采纳,获得10
13秒前
英俊的铭应助Allison采纳,获得10
13秒前
李加油发布了新的文献求助10
13秒前
共享精神应助111采纳,获得10
14秒前
14秒前
端庄优雅完成签到 ,获得积分10
14秒前
15秒前
高兴问凝完成签到,获得积分20
16秒前
Hana发布了新的文献求助30
16秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247936
求助须知:如何正确求助?哪些是违规求助? 2891185
关于积分的说明 8266538
捐赠科研通 2559374
什么是DOI,文献DOI怎么找? 1388196
科研通“疑难数据库(出版商)”最低求助积分说明 650711
邀请新用户注册赠送积分活动 627620