Towards an understanding of the enzymatic degradation of complex plant mannan structures

甘露聚糖 化学 生物化学 糖苷水解酶 多糖 水解 半纤维素 酶水解 木质纤维素生物量
作者
Mpho S. Mafa,Samkelo Malgas
出处
期刊:World Journal of Microbiology & Biotechnology [Springer Nature]
卷期号:39 (11) 被引量:11
标识
DOI:10.1007/s11274-023-03753-7
摘要

Abstract Plant cell walls are composed of a heterogeneous mixture of polysaccharides that require several different enzymes to degrade. These enzymes are important for a variety of biotechnological processes, from biofuel production to food processing. Several classical mannanolytic enzyme functions of glycoside hydrolases (GH), such as β-mannanase, β-mannosidase and α-galactosidase activities, are helpful for efficient mannan hydrolysis. In this light, we bring three enzymes into the model of mannan degradation that have received little or no attention. By linking their three-dimensional structures and substrate specificities, we have predicted the interactions and cooperativity of these novel enzymes with classical mannanolytic enzymes for efficient mannan hydrolysis. The novel exo-β-1,4-mannobiohydrolases are indispensable for the production of mannobiose from the terminal ends of mannans, this product being the preferred product for short-chain mannooligosaccharides (MOS)-specific β-mannosidases. Second, the side-chain cleaving enzymes, acetyl mannan esterases (AcME), remove acetyl decorations on mannan that would have hindered backbone cleaving enzymes, while the backbone cleaving enzymes liberate MOS, which are preferred substrates of the debranching and sidechain cleaving enzymes. The nonhydrolytic expansins and swollenins disrupt the crystalline regions of the biomass, improving their accessibility for AcME and GH activities. Finally, lytic polysaccharide monooxygenases have also been implicated in promoting the degradation of lignocellulosic biomass or mannan degradation by classical mannanolytic enzymes, possibly by disrupting adsorbed mannan residues. Modelling effective enzymatic mannan degradation has implications for improving the saccharification of biomass for the synthesis of value-added and upcycling of lignocellulosic wastes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
领导范儿应助1111111222采纳,获得10
1秒前
1秒前
阳光的羊发布了新的文献求助10
1秒前
火龙果完成签到,获得积分10
2秒前
不低头完成签到,获得积分10
2秒前
畅快寄容完成签到,获得积分10
4秒前
大个应助zhgj采纳,获得10
4秒前
5秒前
否定之否定完成签到,获得积分10
5秒前
5秒前
NexusExplorer应助eloisa采纳,获得10
6秒前
涟漪发布了新的文献求助10
6秒前
Akim应助sue402采纳,获得10
6秒前
不低头发布了新的文献求助10
6秒前
7秒前
小鱼完成签到 ,获得积分10
7秒前
刘忙发布了新的文献求助10
9秒前
七个葫芦娃完成签到,获得积分10
10秒前
顾矜应助畅快寄容采纳,获得10
10秒前
Erina完成签到 ,获得积分10
10秒前
小马甲应助小鹿呀采纳,获得10
10秒前
离明发布了新的文献求助10
10秒前
优秀的半双完成签到,获得积分10
11秒前
pluto应助四憙采纳,获得10
12秒前
艾v完成签到,获得积分10
12秒前
浅碎时光发布了新的文献求助30
13秒前
科研通AI2S应助YOGA1115采纳,获得10
13秒前
大个应助爱德华兹俊采纳,获得30
13秒前
领导范儿应助yangfeidong采纳,获得10
13秒前
Hou发布了新的文献求助20
13秒前
14秒前
XSY完成签到,获得积分20
14秒前
15秒前
15秒前
18秒前
Owen应助祈雨的鲸鱼采纳,获得10
18秒前
涟漪完成签到,获得积分10
19秒前
19秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470844
求助须知:如何正确求助?哪些是违规求助? 3063847
关于积分的说明 9085670
捐赠科研通 2754320
什么是DOI,文献DOI怎么找? 1511386
邀请新用户注册赠送积分活动 698380
科研通“疑难数据库(出版商)”最低求助积分说明 698253