加权
人工智能
计算机科学
联营
分割
模式识别(心理学)
频域
特征(语言学)
图像分割
空间频率
空间分析
对象(语法)
领域(数学分析)
计算机视觉
遥感
地理
数学
放射科
数学分析
哲学
物理
光学
医学
语言学
作者
Tony Zhang,Robert P. Dick
标识
DOI:10.1109/icip49359.2023.10222768
摘要
We describe a deep learning system for satellite image segmentation. Our CNN model embeds contextual feature dependencies in both spatial and frequency domains. Its Spatial Weighting Module uses a multi-scale pooling layer to represent correlations at longer length scales in the spatial domain. Its Frequency Weighting Module uses frequency-domain information to better discriminate between object classes. Experimental results on the Potsdam dataset demonstrate that our model has a 1.9% higher average F1 accuracy than previous methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI