SceneNet: A Multi-Feature Joint Embedding Network With Complexity Assessment for Power Line Scene Classification

计算机科学 人工智能 特征提取 水准点(测量) 特征(语言学) 模式识别(心理学) 语言学 哲学 大地测量学 地理
作者
Le Zhao,Hongtai Yao,Yajun Fan,Haihua Ma,Zhihui Li,Meng Tian
出处
期刊:IEEE Transactions on Aerospace and Electronic Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-23
标识
DOI:10.1109/taes.2023.3313993
摘要

Power line extraction is not only crucial for UAVs obstacle avoidance, but also a fundamental step for fault diagnosis of power lines. Therefore, achieving robust and accurate extraction of power lines in aerial images is essential to enable intelligent UAVs inspection. Unfortunately, power line extraction is an extremely challenging task, and all the current methods attempt to utilize a single model to solve the problem of power line extraction in complex and variable scenes. This results in insufficient generalization ability and suboptimal computational efficiency. In this work, we propose a power line scene classification network based on complexity assessment, named SceneNet, which can provide a solution for tackling power line extraction challenges. Firstly, we propose a human-machine hybrid reasoning model to obtain the ground truth of image complexity reasonably and build the first benchmark dataset that can be used for automatic classification research of power line scenes. Secondly, we propose an improved StyleGAN3 model and loop transfer learning strategy for data augmentation. Most importantly, the SceneNet comprises a multi-feature joint embedding module and a feature encoding-decoding module. On the one hand, it achieves the multi-level fusion of artificial features and high-dimensional semantic features. On the other hand, we use a self-attention mechanism to enable full use of the contextual association between each block of the fusion feature map. The SceneNet has successfully achieved the mapping and pattern recognition between the abstract concept and the concrete features. Experimental results demonstrate that the SceneNet is obviously superior to the existing 12 state-of-the-art models, and it provides guidance and delineation of applicable scenes for power line extraction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kanong完成签到,获得积分0
1秒前
fireking_sid完成签到,获得积分10
3秒前
辛勤夜安完成签到 ,获得积分10
10秒前
烤鸭完成签到 ,获得积分10
11秒前
23秒前
linn完成签到 ,获得积分20
24秒前
卷卷发布了新的文献求助10
27秒前
32秒前
浮云完成签到 ,获得积分10
37秒前
42秒前
ycd完成签到,获得积分10
44秒前
joeqin完成签到,获得积分10
49秒前
啵叽一口完成签到 ,获得积分10
50秒前
嗯哼应助Singularity采纳,获得20
50秒前
CYL完成签到 ,获得积分10
50秒前
chiyudoubao发布了新的文献求助10
59秒前
蛋妮完成签到 ,获得积分10
1分钟前
一辉完成签到 ,获得积分10
1分钟前
嘉心糖应助tmobiusx采纳,获得30
1分钟前
星光完成签到 ,获得积分10
1分钟前
1分钟前
淼淼之锋完成签到 ,获得积分10
1分钟前
我的白起是国服完成签到 ,获得积分10
1分钟前
铁妹儿完成签到 ,获得积分10
1分钟前
木木杉完成签到 ,获得积分10
1分钟前
lilylwy完成签到 ,获得积分10
1分钟前
平常山河完成签到 ,获得积分10
1分钟前
居蓝完成签到 ,获得积分10
1分钟前
zjq完成签到 ,获得积分10
1分钟前
科研废物完成签到 ,获得积分10
1分钟前
烂漫的冰蓝完成签到,获得积分20
1分钟前
深情安青应助烂漫的冰蓝采纳,获得10
1分钟前
echo完成签到 ,获得积分10
1分钟前
纯真以晴完成签到,获得积分10
1分钟前
wishe完成签到,获得积分10
1分钟前
liukuangxu完成签到 ,获得积分10
2分钟前
哈拉斯完成签到,获得积分10
2分钟前
Hiram完成签到,获得积分10
2分钟前
lcs完成签到,获得积分10
2分钟前
wyt完成签到,获得积分10
2分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167235
求助须知:如何正确求助?哪些是违规求助? 2818702
关于积分的说明 7921929
捐赠科研通 2478475
什么是DOI,文献DOI怎么找? 1320350
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443