电化学发光
内生
核酸
检出限
化学
小RNA
生物物理学
酶
DNA
线性范围
纳米技术
生物化学
材料科学
基因
生物
色谱法
作者
Han Wang,Lin Shi,Qiwei Wang,Lili Shi,Tao Li
标识
DOI:10.1016/j.bios.2023.115687
摘要
Here we develop robust noncovalent spherical nucleic acid enzymes (SNAzymes) for direct electrochemiluminescence (ECL) detection of acute myocardial infarction (AMI) related endogenous microRNAs in both circulating blood and cardiomyocytes, which circumvents the need for time-consuming signal amplification widely used in previous counterparts. It mainly relies on the super peroxidase-like activity of the designed noncovalent SNAzymes, promoted by a few nucleotides flanking on the 3'-terminals of common parallel G-quadruplexes (G4). For this reason, an unmodified G4 with an A5T30 head is well chosen and then attached robustly onto bare AuNPs via microwave-assisted heating-drying. A probe strand is meanwhile attached onto SNAzymes, enabling the target microRNA-triggered formation of a Y-shaped junction together with a capture strand tethered to a DNA tetrahedron on the electrode surface. The utilization of this tetrahedral nanoscaffold favors the ECL readout and thereby contributes to high sensitivity of the sensing platform. In this way, an AMI-related microRNA, miR-499, can be probed in a wide linear range, with a detection limit of 33 aM and high selectivity over other analogues. Furthermore, our developed sensing platform is employed to analyze endogenous miR-499 in AMI patients' blood, revealing an apparently higher level than the mean value of the healthy. What it means to patients, heart injury, is elucidated by comparing the miR-499 levels of cardiomyocytes and other tissue cells, with endogenous miR-16 as an intrinsic reference.
科研通智能强力驱动
Strongly Powered by AbleSci AI