估计员
数学
一致性(知识库)
统计
维数(图论)
相关性
应用数学
因子分析
样本量测定
一致估计量
斯皮尔曼秩相关系数
基质(化学分析)
高维
计算机科学
最小方差无偏估计量
人工智能
组合数学
离散数学
材料科学
几何学
复合材料
作者
Jiaxin Qiu,Li Zeng,Jianfeng Yao
出处
期刊:Cornell University - arXiv
日期:2023-01-01
标识
DOI:10.48550/arxiv.2309.00870
摘要
Determining the number of factors in high-dimensional factor modeling is essential but challenging, especially when the data are heavy-tailed. In this paper, we introduce a new estimator based on the spectral properties of Spearman sample correlation matrix under the high-dimensional setting, where both dimension and sample size tend to infinity proportionally. Our estimator is robust against heavy tails in either the common factors or idiosyncratic errors. The consistency of our estimator is established under mild conditions. Numerical experiments demonstrate the superiority of our estimator compared to existing methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI